Mathematical Techniques for Computer Science Applications

remi.imbach@nyu.edu

webpage:
https://cs.nyu.edu/courses/spring19/CSCI-GA.1180-001/
Course 3 - Matrices and linear maps

I Definitions and examples
 1 First examples
 2 More definitions

II Operations and properties

III Linear maps

IV Matrices in Matlab
Definition

A \(m \times n \) matrix is a two dimensional array of real numbers, with \(m \) rows and \(n \) columns.

\[
A = \begin{bmatrix}
1 & 2.1 & 3.1 \\
2.1 & 1.2 & 5
\end{bmatrix}
\] is a \(2 \times 3 \) matrix,

\[
B = \begin{bmatrix}
1.2 & 4.1 \\
2.5 & 5
\end{bmatrix}
\] is a \(2 \times 2 \) matrix.

A matrix is \emph{square} when \(m = n \) (nb of rows=nb of columns).

If \(1 \leq i \leq m \) and \(1 \leq j \leq n \), \(A[i,j] \) will denote the elements of \(A \) at row \(i \) and column \(j \). (It is more often noted \(A_{i,j} \) or \(A_{ij} \)).

Here \(A[2,1] = 2.1 \).
First examples

- Black & White image of \(n \times m \) pixels: \(m \times n \) matrix with 0 and 1
First examples

• Black & White image of \(n \times m \) pixels: \(m \times n \) matrix with 0 and 1

• Database of the online store with \(n \) products and \(m \) customers: \(m \times n \) matrix with integers

On-line store: 5 products \(p_1, p_2, \ldots, p_5 \),
5 customers \(c_1, c_2, \ldots, c_5 \).

Database: 2-dimensional array

<table>
<thead>
<tr>
<th></th>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_2)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(c_3)</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(c_4)</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(c_5)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Value at line \(i \) and column \(j \) is \(k \): \(c_i \) bought \(k \) items of product \(p_j \).
First examples

- Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1
- Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”
First examples

• Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1

• Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”

• Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix

Let $\vec{u} \in \mathbb{R}^3$, and $f_1, f_2 : \mathbb{R}^3 \to \mathbb{R}$ defined as:

$$f_1(\vec{u}) = 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3]$$
$$f_2(\vec{u}) = 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3]$$
First examples

- Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1
- Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”
- Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix

Let $\vec{u} \in \mathbb{R}^3$, and $f_1, f_2 : \mathbb{R}^3 \to \mathbb{R}$ defined as:

\[
\begin{align*}
 f_1(\vec{u}) &= 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3] & \leftarrow \text{linear, characterized by } \vec{v}_1 = \langle 3, -5, 2 \rangle \\
 f_2(\vec{u}) &= 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3]
\end{align*}
\]
First examples

• Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1

• Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”

• Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix

Let $\vec{u} \in \mathbb{R}^3$, and $f_1, f_2 : \mathbb{R}^3 \rightarrow \mathbb{R}$ defined as:

\[
\begin{align*}
 f_1(\vec{u}) &= 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3] \quad \leftarrow \text{linear, characterized by } \vec{v}_1 = \langle 3, -5, 2 \rangle \\
 f_2(\vec{u}) &= 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3] \quad \leftarrow \text{linear, characterized by } \vec{v}_2 = \langle 2, 4, -3 \rangle
\end{align*}
\]
First examples

- Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1
- Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”

- Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix

Let $\vec{u} \in \mathbb{R}^3$, and $f_1, f_2 : \mathbb{R}^3 \rightarrow \mathbb{R}$ defined as:

\[
\begin{align*}
 f_1(\vec{u}) &= 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3] \quad \leftarrow \text{linear, characterized by } \vec{v}_1 = \langle 3, -5, 2 \rangle \\
 f_2(\vec{u}) &= 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3] \quad \leftarrow \text{linear, characterized by } \vec{v}_2 = \langle 2, 4, -3 \rangle
\end{align*}
\]

Let $F : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ defined as: $F(\vec{u}) = \langle f_1(\vec{u}), f_2(\vec{u}) \rangle$
First examples

• Black & White image of \(n \times m \) pixels: \(m \times n \) matrix with 0 and 1

• Database of the online store with \(n \) products and \(m \) customers: \(m \times n \) matrix with integers

above, “matrix” is just another word for “2D table”

• Linear maps from \(\mathbb{R}^n \) to \(\mathbb{R}^m \): uniquely characterized by an \(m \times n \) matrix

Let \(\vec{u} \in \mathbb{R}^3 \), and \(f_1, f_2 : \mathbb{R}^3 \to \mathbb{R} \) defined as:

\[
\begin{align*}
 f_1(\vec{u}) &= 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3] & \leftarrow \text{linear, characterized by } \vec{v}_1 = \langle 3, -5, 2 \rangle \\
 f_2(\vec{u}) &= 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3] & \leftarrow \text{linear, characterized by } \vec{v}_2 = \langle 2, 4, -3 \rangle
\end{align*}
\]

Let \(F : \mathbb{R}^3 \to \mathbb{R}^2 \) defined as: \(F(\vec{u}) = \langle f_1(\vec{u}), f_2(\vec{u}) \rangle = \begin{bmatrix} f_1(\vec{u}) \\ f_2(\vec{u}) \end{bmatrix} \)
First examples

- Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1
- Database of the online store with n products and m customers: $m \times n$ matrix with integers
 - above, “matrix” is just another word for “2D table”
- Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix

Let $\vec{u} \in \mathbb{R}^3$, and $f_1, f_2 : \mathbb{R}^3 \to \mathbb{R}$ defined as:

\[
\begin{align*}
 f_1(\vec{u}) &= 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3] & \leftarrow \text{linear, characterized by } \vec{v}_1 = \langle 3, -5, 2 \rangle \\
 f_2(\vec{u}) &= 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3] & \leftarrow \text{linear, characterized by } \vec{v}_2 = \langle 2, 4, -3 \rangle
\end{align*}
\]

Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined as: $F(\vec{u}) = \langle f_1(\vec{u}), f_2(\vec{u}) \rangle = \begin{bmatrix} f_1(\vec{u}) \\ f_2(\vec{u}) \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \cdot \vec{u} \\ \vec{v}_2 \cdot \vec{u} \end{bmatrix}$
First examples

- Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1
- Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”

- Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix

Let $\vec{u} \in \mathbb{R}^3$, and $f_1, f_2 : \mathbb{R}^3 \to \mathbb{R}$ defined as:

\[
\begin{align*}
 f_1(\vec{u}) &= 3\vec{u}[1] - 5\vec{u}[2] + 2\vec{u}[3] \quad \leftarrow \text{linear, characterized by } \vec{v}_1 = \langle 3, -5, 2 \rangle \\
 f_2(\vec{u}) &= 2\vec{u}[1] + 4\vec{u}[2] - 3\vec{u}[3] \quad \leftarrow \text{linear, characterized by } \vec{v}_2 = \langle 2, 4, -3 \rangle
\end{align*}
\]

Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined as: $F(\vec{u}) = \langle f_1(\vec{u}), f_2(\vec{u}) \rangle = \begin{bmatrix} f_1(\vec{u}) \\ f_2(\vec{u}) \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \bullet \vec{u} \\ \vec{v}_2 \bullet \vec{u} \end{bmatrix}$

F is characterized by $\begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 3 & -5 & 2 \\ 2 & 4 & -3 \end{bmatrix}$
First examples

• Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1

• Database of the online store with n products and m customers: $m \times n$ matrix with integers

 above, “matrix” is just another word for “2D table”

• Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix
 • some geometric transformations (computer graphics)
 • linear operations in signal processing
 • Markov chains (game theory, AI, . . .)
 • . . .
First examples

- Black & White image of $n \times m$ pixels: $m \times n$ matrix with 0 and 1
- Database of the online store with n products and m customers: $m \times n$ matrix with integers
 above, “matrix” is just another word for “2D table”
- Linear maps from \mathbb{R}^n to \mathbb{R}^m: uniquely characterized by an $m \times n$ matrix
 - some geometric transformations (computer graphics)
 - linear operations in signal processing
 - Markov chains (game theory, AI, ...)
 - ...
- adjacency matrix of a graph
Example: adjacency matrix of a graph

Graph G: couple (V, E) where $V = \{v_1, v_2, \ldots, v_n\}$ and E is a subset of $V \times V$. Example:

- vertices: $V = \{1, 2, \ldots, 6\}$
- edges: $E = \{(1, 2), (2, 3), \ldots, (6, 1)\}$
Example: adjacency matrix of a graph

Graph G: couple (V, E) where $V = \{v_1, v_2, \ldots, v_n\}$ and E is a subset of $V \times V$.

Example:

- vertices: $V = \{1, 2, \ldots, 6\}$
- edges: $E = \{(1, 2), (2, 3), \ldots, (6, 1)\}$

Adjacency matrix G of G: $n \times n$ matrix defined as:

- $G[i, j] = 1$ if there is an edge from v_i to v_j in G,
- $G[i, j] = 0$ otherwise.

$$
G = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 & 1 & 0 \\
3 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 1 & 0 \\
5 & 1 & 0 & 0 & 1 & 0 \\
6 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
$$
Course 3 - Matrices and linear maps

I Definitions and examples
 1 First examples
 2 More definitions

II Operations and properties

III Linear maps

IV Matrices in Matlab
Peculiar matrices

$0_{m \times n}$ or 0 is the matrix which all elements are 0.

$0_{2 \times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

I_m or I, called the identity matrix is the square matrix of size $m \times m$ which all elements are 0 but the elements of the diagonal that are 1.

$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

A matrix D is diagonal if it is square and all its elements are 0 but the elements of the diagonal. (Formally: D of size $m \times m$ is diagonal iff $i \neq j \Rightarrow D[i, j] = 0$)

$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3.5 \end{bmatrix}$
Rows, columns and vectors

We will call

- \(n \)-dimensional \textit{row vector} a \(1 \times n \) matrix, and
- \(m \)-dimensional \textit{column vector} a \(m \times 1 \) matrix.

\[A_1 = \begin{bmatrix} 1 & 2.1 & 3.1 \end{bmatrix} \] is a 3-dimensional row vector

\[A'_2 = \begin{bmatrix} 2.1 \\ 1.2 \end{bmatrix} \] is a 2-dimensional column vector

An \(m \times n \) matrix can be seen as

- \(m \ n \)-dimensional row vectors, (note \(A[i,:] \) the \(i \)-th row vector of \(A \))
- \(n \ m \)-dimensional column vectors, (note \(A[:,j] \) the \(j \)-th column vector of \(A \)).
Example

\[A = \begin{bmatrix} 1 & 2.1 & 3.1 \\ 2.1 & 1.2 & 5 \end{bmatrix} \] is a \(2 \times 3\) matrix,

\[= \begin{bmatrix} A[1, :] \\ A[2, :] \end{bmatrix} \text{ where } A[1, :] = \begin{bmatrix} 1 & 2.1 & 3.1 \end{bmatrix} \text{ and } A[2, :] = \begin{bmatrix} 2.1 & 1.2 & 5 \end{bmatrix} \]

\[= \begin{bmatrix} A[:, 1] & A[:, 2] & A[:, 3] \end{bmatrix} \text{ where } A[:, 1] = \begin{bmatrix} 1 \\ 2.1 \end{bmatrix}, \ A[:, 2] = \begin{bmatrix} 2.1 \\ 1.2 \end{bmatrix} \text{ and } A[:, 3] = \begin{bmatrix} 3.1 \\ 5 \end{bmatrix} \]
Course 3 - Matrices and linear maps

I Definitions and examples
II Operations and properties
 1 Transpose
 2 Scalar multiplication
 3 Sum, difference
 4 Matrix times a vector
 5 Matrix times a matrix
III Linear maps
IV Matrices in Matlab
Transpose

Let A be an $m \times n$ matrix.
The **transpose** of A, noted A^t, is the $n \times m$ matrix whose rows are the cols of A:

$$\forall 1 \leq i \leq n, \forall 1 \leq j \leq m, A^t[i, j] = A[j, i]$$

$$A = \begin{bmatrix} 1 & 2.1 & 3.1 \\ 2.1 & 1.2 & 5 \end{bmatrix}, \ A^t = \begin{bmatrix} 1 & 2.1 \\ 2.1 & 1.2 \\ 3.1 & 5 \end{bmatrix}$$
Transpose

Let A be an $m \times n$ matrix. The *transpose* of A, noted A^t, is the $n \times m$ matrix whose rows are the cols of A:

$$ \forall 1 \leq i \leq n, \forall 1 \leq j \leq m, A^t[i, j] = A[j, i] $$

$$ A = \begin{bmatrix} 1 & 2.1 & 3.1 \\ 2.1 & 1.2 & 5 \end{bmatrix}, \quad A^t = \begin{bmatrix} 1 & 2.1 \\ 2.1 & 1.2 \\ 3.1 & 5 \end{bmatrix} $$

In particular:

- the transpose of a n-dim. row vector is a n-dim. column vector
- the transpose of a m-dim. column vector is a m-dim. row vector
- if D is a diagonal matrix, $D^t = D.$

$$ D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3.5 \end{bmatrix} $$
Properties

Let A, B, C be $m \times n$ matrices, and $r, s \in \mathbb{R}^n$.

(P1) **Self inverse of transposition**: $(A^t)^t = A$
Course 3 - Matrices and linear maps

I Definitions and examples
II Operations and properties
 1 Transpose
 2 Scalar multiplication
 3 Sum, difference
 4 Matrix times a vector
 5 Matrix times a matrix
III Linear maps
IV Matrices in Matlab
Scalar multiplication

Let A be an $m \times n$ matrix and $r \in \mathbb{R}$.

The scalar multiplication of A by r, noted rA or rA or Ar is the $m \times n$ matrix obtained by multiplying each element of A by r:

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq n, (rA)[i,j] = r(A[i,j])$$

$$A = \begin{bmatrix} 1 & 2.1 & 3.1 \\ 2.1 & 1.2 & 5 \end{bmatrix}, \quad r = 2$$

$$= \begin{bmatrix} 2 \times 1 & 2 \times 2.1 & 2 \times 3.1 \\ 2 \times 2.1 & 2 \times 1.2 & 2 \times 5 \end{bmatrix}$$
Properties

Let A, B, C be $m \times n$ matrices, and $r, s \in \mathbb{R}^n$.

(P1) Self inverse of transposition: $(A^t)^t = A$

(P2) Commutativity of \cdot: $rA = Ar$

(P3) Associativity of \cdot: $r(sA) = (rs)A$

(P4) $(rA)^t = r(A^t)$

(P5) Commutativity of $+$: $A + B = B + A$

(P6) Associativity of $+$: $(A + B) + C = A + (B + C)$

(P7) Distributivity of \cdot over $+$: $r(A + B) = rA + rB$

(P8) Distributivity of $+$ over \cdot: $(r + s)A = rA + sA$

(P9) Distributivity of transposition over $+$: $(A + B)^t = A^t + B^t$

(P10) 0 is the identity for $+$: $A + 0 = 0 + A = A$
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties
 1 Transpose
 2 Scalar multiplication
 3 Sum, difference
 4 Matrix times a vector
 5 Matrix times a matrix

III Linear maps

IV Matrices in Matlab
Addition

Let A, B be $m \times n$ matrices.

The *sum* of A and B, noted $A + B$, is the $m \times n$ matrix obtained by adding A and B component-wise:

\[
\forall 1 \leq i \leq m, \forall 1 \leq j \leq n, (A + B)[i, j] = A[i, j] + B[i, j]
\]

The addition is defined only if A and B have the same dimensions!

- if $A = \begin{bmatrix} 1 & 2.1 & 3.1 \\ 2.1 & 1.2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1.2 & 4.1 \\ 2.5 & 5 \end{bmatrix}$, $A + B$ is not defined
- if $A = \begin{bmatrix} 1 & 2.1 & 3.1 \\ 2.1 & 1.2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1.2 & 4.1 & 4 \\ 2.5 & 5 & 7 \end{bmatrix}$

\[
A + B = \begin{bmatrix} 1 + 1.2 & 2.1 + 4.1 & 3.1 + 4 \\ 2.1 + 2.5 & 1.2 + 5 & 5 + 7 \end{bmatrix} = \begin{bmatrix} 2.2 & 6.2 & 7.1 \\ 4.6 & 6.2 & 12 \end{bmatrix}
\]

$A - B$ is $A + (-1)B$
Properties

Let A, B, C be $m \times n$ matrices, and $r, s \in \mathbb{R}^n$.

(P1) Self inverse of transposition: $(A^t)^t = A$

(P2) Commutativity of \cdot: $rA = Ar$

(P3) Associativity of \cdot: $r(sA) = (rs)A$

(P4) $(rA)^t = r(A^t)$

(P5) Commutativity of $+$: $A + B = B + A$

(P6) Associativity of $+$: $(A + B) + C = A + (B + C)$

(P7) Distributivity of \cdot over $+$: $r(A + B) = rA + rB$

(P8) Distributivity of $+$ over \cdot: $(r + s)A = rA + sA$

(P9) Distributivity of transposition over $+$: $(A + B)^t = A^t + B^t$

(P10) 0 is the identity for $+$: $A + 0 = 0 + A = A$

Here 0 is $0_{m\times n}$
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties
 1 Transpose
 2 Scalar multiplication
 3 Sum, difference
 4 Matrix times a vector
 5 Matrix times a matrix

III Linear maps

IV Matrices in Matlab
Matrix times a vector

Let A be an $m \times n$ matrix and $\vec{u} \in \mathbb{R}^n$.

The multiplication of A by \vec{u}, noted $A\vec{u}$, is the m-dimensional vector which i-th component $(A\vec{u})[i]$ is the dot product of the i-th row vector $A[i,:]$ of A and \vec{u}:

$$A\vec{u} = \langle A[1,:] \cdot \vec{u}, A[2,:] \cdot \vec{u}, \ldots, A[m,:] \cdot \vec{u} \rangle$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix} \quad \text{and} \quad \vec{u} = \langle 1, 2, 3 \rangle$$

$$A\vec{u} = \langle 1 \times 1 + 2 \times 2 + 3 \times 3, 2 \times 1 + 3 \times 2 + 4 \times 3 \rangle = \langle 14, 20 \rangle$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \vec{u} \in \mathbb{R}^3$$

$$I_3 \vec{u} = \vec{u}$$
Matrix times a vector

Let A be an $m \times n$ matrix and $\mathbf{u} \in \mathbb{R}^n$.

The multiplication of A by \mathbf{u}, noted $A\mathbf{u}$, is the m-dimensional vector which i-th component $(A\mathbf{u})[i]$ is the dot product of the i-th row vector $A[i,:]$ of A and \mathbf{u}:

$$A\mathbf{u} = \langle A[1,:] \cdot \mathbf{u}, A[2,:] \cdot \mathbf{u}, \ldots, A[m,:] \cdot \mathbf{u} \rangle$$

Another definition of $A\mathbf{u}$ is

$$\forall 1 \leq i \leq m, (A\mathbf{u})[i] = \sum_{j=1}^{n} A[i,j] \mathbf{u}[j]$$

$A\mathbf{u}$ is defined only if the dim of \mathbf{u} is the num. of cols. of A.
Matrix times a vector (II)

Often we consider that \vec{u} is an n-dim *column* vector and $A\vec{u}$ an m-dim *column* vector:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix} \text{ and } \vec{u} = \langle 1, 2, 3 \rangle$$

$$A\vec{u} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 2 \times 2 + 3 \times 3 \\ 2 \times 1 + 3 \times 2 + 4 \times 3 \end{bmatrix} = \begin{bmatrix} 14 \\ 20 \end{bmatrix}$$
Matrix times a vector (II)

Often we consider that \(\vec{u} \) is an \(n \)-dim \textit{column} vector and \(A\vec{u} \) an \(m \)-dim \textit{column} vector:

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4
\end{bmatrix}
\text{ and } \vec{u} = \langle 1, 2, 3 \rangle
\]

\[
A\vec{u} = \begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
= \begin{bmatrix}
1 \times 1 + 2 \times 2 + 3 \times 3 \\
2 \times 1 + 3 \times 2 + 4 \times 3
\end{bmatrix}
= \begin{bmatrix}
14 \\
20
\end{bmatrix}
\]

Remark: See \(A \) as \(n \) \(m \)-dim column vectors; then \(A\vec{u} = \sum_{j=1}^{n} \vec{u}[j]A[:,j] \)

\[
A\vec{u} = \begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
= 1 \begin{bmatrix}
1 \\
2
\end{bmatrix} + 2 \begin{bmatrix}
2 \\
3
\end{bmatrix} + 3 \begin{bmatrix}
3 \\
4
\end{bmatrix}
= \begin{bmatrix}
14 \\
20
\end{bmatrix}
\]
Properties of Matrix times a vector

Let A, B be $m \times n$ matrices, $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

(P11) Distributivity: $(A + B)\vec{u} = A\vec{u} + B\vec{u}$, and $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$

(P12) Associativity: $(rA)\vec{u} = r(A\vec{u}) = A(r\vec{u})$

(P13) $0_{m \times n}\vec{u} = \vec{0}$

(P14) $I_n\vec{u} = \vec{u}$

(P15) $A\vec{0}_n = \vec{0}_m$
Properties of Matrix times a vector

Let A, B be $m \times n$ matrices, $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

(P11) Distributivity: $(A + B)\vec{u} = A\vec{u} + B\vec{u}$, and $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$

(P12) Associativity: $(rA)\vec{u} = r(A\vec{u}) = A(r\vec{u})$

(P13) $0_{m \times n}\vec{u} = \vec{0}$

(P14) $I_n\vec{u} = \vec{u}$

(P15) $A\vec{0}_n = \vec{0}_m$

Questions: What is $A\vec{1}_n$?
What is $A\vec{e}_i$, when $i \leq n$?
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties
 1 Transpose
 2 Scalar multiplication
 3 Sum, difference
 4 Matrix times a vector
 5 Matrix times a matrix

III Linear maps

IV Matrices in Matlab
Matrix times a matrix

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. The matrix product AB, is the $m \times p$ matrix defined by

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = A[i,:] \bullet B[:,j]$$

i,j-th element is the dot product of the i-th line with j-th column

$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix}$ is a 3×4 matrix

$$AB = \begin{bmatrix} 1 \times 7 + 2 \times 11 \end{bmatrix}$$
Matrix times a matrix

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. The matrix product AB, is the $m \times p$ matrix defined by

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = A[i,:] \cdot B[:,j]$$

i,j-th element is the dot product of the i-th line with j-th column

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix} \text{ is a } 3 \times 4 \text{ matrix}$$

$$= \begin{bmatrix} 1 \times 7 + 2 \times 11 \end{bmatrix}$$
Matrix times a matrix

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix.
The matrix product AB, is the $m \times p$ matrix defined by

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = A[i,:] \cdot B[:,j]$$

i,j-th element is the dot product of the i-th line with j-th column

$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix}$ is a 3×4 matrix

$$AB = \begin{bmatrix} 1 \times 7 + 2 \times 11 & 1 \times 8 + 2 \times 12 \end{bmatrix}$$
Matrix times a matrix

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix.
The matrix product AB, is the $m \times p$ matrix defined by

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = A[i,:) \cdot B[:,j]$$

i,j-th element is the dot product of the i-th line with j-th column

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix} \text{ is a } 3 \times 4 \text{ matrix}$$

$$= \begin{bmatrix} 1 \times 7 + 2 \times 11 & 1 \times 8 + 2 \times 12 & 1 \times 9 + 2 \times 13 & 1 \times 10 + 2 \times 14 \\ 3 \times 7 + 4 \times 11 \end{bmatrix}$$
Matrix times a matrix

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. The matrix product AB, is the $m \times p$ matrix defined by

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = A[i,:] \cdot B[:,j]$$

i,j-th element is the dot product of the i-th line with j-th column

$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 \end{bmatrix}$ is a 3×4 matrix

$$AB = \begin{bmatrix} 1 \times 7 + 2 \times 11 & 1 \times 8 + 2 \times 12 & 1 \times 9 + 2 \times 13 & 1 \times 10 + 2 \times 14 \\ 3 \times 7 + 4 \times 11 & 3 \times 8 + 4 \times 12 & 3 \times 9 + 4 \times 13 & 3 \times 10 + 4 \times 14 \\ 5 \times 7 + 6 \times 11 & 5 \times 8 + 6 \times 12 & 5 \times 9 + 6 \times 13 & 5 \times 10 + 6 \times 14 \end{bmatrix}$$

$$= \begin{bmatrix} 29 & 32 & 35 & 38 \\ 65 & 72 & 79 & 86 \\ 101 & 112 & 123 & 134 \end{bmatrix}$$
Matrix times a matrix

Let A be a $m \times n$ matrix and B be a $n \times p$ matrix. The matrix product AB, is the $m \times p$ matrix defined by

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = A[i,:] \bullet B[:,j]$$

The algebraic definition of AB is

$$\forall 1 \leq i \leq m, \forall 1 \leq j \leq p, (AB)[i,j] = \sum_{k=1}^{n} A[i,k]B[k,j]$$

AB is defined only if the num. of cols of A equals the num. of rows of B.
Properties of matrix times a matrix

Let A, B be $m \times n$ mat., C, D be $n \times p$ mat., E be a $p \times q$ mat., and $r \in \mathbb{R}$.

(P16) **associativity:** $A(CE) = (AC)E$

(P17) **right distributivity:** $A(C + D) = AC + AD$

(P18) **left distributivity:** $(A + B)C = AC + BC$

(P19) $r(AB) = (rA)B = A(rB)$

(P20) **right identity:** $AI_n = A$

(P21) **left identity:** $I_nC = C$

(P22) $(AB)^t = B^tA^t$

The matrix product is not commutative, even for square matrices! *i.e. in general, $A \times B \neq B \times A$*
Properties of matrix times a matrix

Let A, B be $m \times n$ mat., C, D be $n \times p$ mat., E be a $p \times q$ mat., and $r \in \mathbb{R}$.

(P16) **associativity:** $A(CE) = (AC)E$

(P17) **right distributivity:** $A(C + D) = AC + AD$

(P18) **left distributivity:** $(A + B)C = AC + BC$

(P19) $r(AB) = (rA)B = A(rB)$

(P20) **right identity:** $A I_n = A$

(P21) **left identity:** $I_n C = C$

(P22) $(AB)^t = B^t A^t$

The matrix product is not commutative, even for square matrices!

i.e. in general, $A \times B \neq B \times A$

Exercise: Prove these properties
Powers of a square matrix

Let A be a square $m \times m$ matrix.

Then

$$A^2 = AA$$

and

$$A^l = A \ldots A$$

l times
Example: adjacency matrix of a graph

Example: $(G^2)[1, 2] = 2$

Does this number mean something?

\[
G = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Example: adjacency matrix of a graph

Example: $(G^2)[1, 2] = 2$

Does this number mean something? nb of paths of length 2 from v_i to v_j!

$$G = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$
Example: adjacency matrix of a graph

Example: $(G^2)[1, 2] = 2$

Does this number mean something? nb of paths of length 2 from v_i to v_j!

What is $G^l[i,j]$?

\[
G = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
Example: adjacency matrix of a graph

Example: $(G^2)[1, 2] = 2$

Does this number mean something? nb of paths of length 2 from v_i to v_j!

What is $G^l[i, j]$? nb of paths of length l from v_i to v_j!

$$G = \begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties

III Linear maps
 1 Definition
 2 Example: geometric transformations of the plane
 3 Characterization
 4 Composition

IV Matrices in Matlab
Definition (Linear map, or linear transformation)

A map $F : \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if for any $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $a \in \mathbb{R}$:

1. $F(\vec{u} + \vec{v}) = F(\vec{u}) + F(\vec{v})$
2. $F(a\vec{u}) = aF(\vec{u})$.

In particular, $F(\vec{0}) = \vec{0}$.

Exemples: Let A be the 2×3 matrix: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$.

Then $F : \mathbb{R}^3 \to \mathbb{R}^2$ defined as $F(\vec{u}) = A\vec{u}$ is linear.

Let B be an $m \times n$ matrix.

Then $G : \mathbb{R}^n \to \mathbb{R}^m$ defined as $G(\vec{u}) = B\vec{u}$ is linear.
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties

III Linear maps
 1 Definition
 2 Example: geometric transformations of the plane
 3 Characterization
 4 Composition

IV Matrices in Matlab
Geometric transformations of the plane

We consider the plane \(\mathbb{R}^2 \).

Dilation by a factor \(a \in \mathbb{R} \): \(D_a : \mathbb{R}^2 \to \mathbb{R}^2, D_a(\vec{u}) = a\vec{u} \)

\(D_a \) is linear.

\(D_a \) is defined by \(D_a(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = aI_2\vec{u} \).
Geometric transformations of the plane

We consider the plane \mathbb{R}^2.

Dilation by a factor $a \in \mathbb{R}$: $D_a : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $D_a(\vec{u}) = a\vec{u}$

D_a is linear.

D_a is defined by $D_a(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = aI_2 \vec{u}$.

Translation by a vector $\vec{v} \in \mathbb{R}^2$: $T_{\vec{v}} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $T_{\vec{v}}(\vec{u}) = \vec{u} + \vec{v}$

$T_{\vec{v}}$ is not linear, because $T_{\vec{v}}(\vec{0}) = \vec{v} \neq \vec{0}$.
Geometric transformations of the plane

We consider the plane \mathbb{R}^2.

Dilation by a factor $a \in \mathbb{R}$: $D_a : \mathbb{R}^2 \to \mathbb{R}^2$, $D_a(\vec{u}) = a\vec{u}$

D_a is linear.

D_a is defined by $D_a(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = a\vec{l}_2\vec{u}$.

Translation by a vector $\vec{v} \in \mathbb{R}^2$: $T_{\vec{v}} : \mathbb{R}^2 \to \mathbb{R}^2$, $T_{\vec{v}}(\vec{u}) = \vec{u} + \vec{v}$

$T_{\vec{v}}$ is not linear, because $T_{\vec{v}}(\vec{0}) = \vec{v} \neq \vec{0}$.

Counter-clockwise rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$; Is R_θ linear?
Geometric transformations of the plane (II)

Counter-clockwise rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$; Is R_θ linear?

$\vec{u} \in \mathbb{R}^2 : \exists \phi \text{ s.t. } \vec{u} = \|\vec{u}\| \langle \cos(\phi), \sin(\phi) \rangle = \langle \|\vec{u}\| \cos(\phi), \|\vec{u}\| \sin(\phi) \rangle$ then

$$R_\theta(\vec{u}) = \langle \|\vec{u}\| \cos(\phi + \theta), \|\vec{u}\| \sin(\phi + \theta) \rangle$$
Geometric transformations of the plane (II)

Counter-clockwise rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$; Is R_θ linear?

$\vec{u} \in \mathbb{R}^2 : \exists \phi \text{ s.t. } \vec{u} = \|\vec{u}\| \langle \cos(\phi), \sin(\phi) \rangle = \langle \|\vec{u}\| \cos(\phi), \|\vec{u}\| \sin(\phi) \rangle \text{ then}$

$$R_\theta(\vec{u}) = \langle \|\vec{u}\| \cos(\phi + \theta), \|\vec{u}\| \sin(\phi + \theta) \rangle$$

$$R_\theta(\vec{u}) = \langle \vec{u}[1] \cos(\theta) - \vec{u}[2] \sin(\theta), \vec{u}[2] \cos(\theta) + \vec{u}[1] \sin(\theta) \rangle$$

Use the trigonometric identities:

- $\cos(\phi + \theta) = \cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta)$,
- $\sin(\phi + \theta) = \sin(\phi)\cos(\theta) + \cos(\phi)\sin(\theta)$.
Counter-clockwise rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$; Is R_θ linear?

$\vec{u} \in \mathbb{R}^2 : \exists \phi \text{ s.t. } \vec{u} = \|\vec{u}\|\langle \cos(\phi), \sin(\phi) \rangle = \langle \|\vec{u}\| \cos(\phi), \|\vec{u}\| \sin(\phi) \rangle$ then

$$R_\theta(\vec{u}) = \langle \|\vec{u}\| \cos(\phi + \theta), \|\vec{u}\| \sin(\phi + \theta) \rangle$$

$$R_\theta(\vec{u}) = \langle \vec{u}[1] \cos(\theta) - \vec{u}[2] \sin(\theta), \vec{u}[2] \cos(\theta) + \vec{u}[1] \sin(\theta) \rangle$$

R_θ is linear, defined by the matrix above

$$R_\theta(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{u}$$
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties

III Linear maps
 1 Definition
 2 Example: geometric transformations of the plane
 3 Characterization
 4 Composition

IV Matrices in Matlab
Remark: Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and $\vec{u} \in \mathbb{R}^n$. $F(\vec{u})$ is a m-dim vector that can be written:

$$F(\vec{u}) = \langle f_1(\vec{u}), \ldots, f_i(\vec{u}), \ldots, f_m(\vec{u}) \rangle$$

where the $f_i : \mathbb{R}^n \to \mathbb{R}$ are linear functions.
Characterization of linear maps

Remark: Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and $\vec{u} \in \mathbb{R}^n$. $F(\vec{u})$ is a m-dim vector that can be written:

$$F(\vec{u}) = \langle f_1(\vec{u}), \ldots, f_i(\vec{u}), \ldots, f_m(\vec{u}) \rangle = \begin{bmatrix} f_1(\vec{u}) \\ \vdots \\ f_i(\vec{u}) \\ \vdots \\ f_m(\vec{u}) \end{bmatrix}$$

where the $f_i : \mathbb{R}^n \to \mathbb{R}$ are linear functions.
Characterization of linear maps

Remark: Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear map and $\vec{u} \in \mathbb{R}^n$.
$F(\vec{u})$ is a m-dim vector that can be written:

\[
F(\vec{u}) = \langle f_1(\vec{u}), \ldots, f_i(\vec{u}), \ldots, f_m(\vec{u}) \rangle = \\
\begin{bmatrix}
 f_1(\vec{u}) \\
 \vdots \\
 f_i(\vec{u}) \\
 \vdots \\
 f_m(\vec{u})
\end{bmatrix} = \\
\begin{bmatrix}
 \vec{v}_1 \cdot \vec{u} \\
 \vdots \\
 \vec{v}_i \cdot \vec{u} \\
 \vdots \\
 \vec{v}_m \cdot \vec{u}
\end{bmatrix}
\]

where the $f_i : \mathbb{R}^n \rightarrow \mathbb{R}$ are linear functions.

As a consequence, it exists m n-dim vectors $\vec{v}_1, \ldots, \vec{v}_m$ s.t. $\forall \vec{u}$:

\[
F(\vec{u}) = \langle \vec{v}_1 \cdot \vec{u}, \ldots, \vec{v}_i \cdot \vec{u}, \ldots, \vec{v}_m \cdot \vec{u} \rangle
\]
Characterization of linear maps

Remark: Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) be a linear map and \(\vec{u} \in \mathbb{R}^n \).

\(F(\vec{u}) \) is a \(m \)-dim vector that can be written:

\[
F(\vec{u}) = \langle f_1(\vec{u}), \ldots, f_i(\vec{u}), \ldots, f_m(\vec{u}) \rangle = \begin{bmatrix} f_1(\vec{u}) \\ \vdots \\ f_i(\vec{u}) \\ \vdots \\ f_m(\vec{u}) \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \cdot \vec{u} \\ \vdots \\ \vec{v}_i \cdot \vec{u} \\ \vdots \\ \vec{v}_m \cdot \vec{u} \end{bmatrix} = \begin{bmatrix} \vec{v}_1 \\ \vdots \\ \vec{v}_i \\ \vdots \\ \vec{v}_m \end{bmatrix} \vec{u}
\]

where the \(f_i : \mathbb{R}^n \to \mathbb{R} \) are linear functions.

As a consequence, it exists \(m \) \(n \)-dim vectors \(\vec{v}_1, \ldots, \vec{v}_m \) s.t. \(\forall \vec{u} \):

\[
F(\vec{u}) = \langle \vec{v}_1 \cdot \vec{u}, \ldots, \vec{v}_i \cdot \vec{u}, \ldots, \vec{v}_m \cdot \vec{u} \rangle
\]

Proposition

Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) be a linear map. Then there exists a unique \(m \times n \) matrix \(A \) such that \(\forall \vec{u} \in \mathbb{R}^n, F(\vec{u}) = A\vec{u} \).
Example: smoothing a 1D signal

Problem: Consider a *noisy* sampled signal \tilde{u} of length n. One wants to reduce noise in this signal.

\tilde{v}: non-noisy signal: n-dimensional vector (in blue below)

\tilde{u}: noisy signal: n-dimensional vector (in red below)
Example: smoothing a 1D signal

Problem: Consider a \textit{noisy} sampled signal \vec{u} of length n.
One wants to reduce noise in this signal.

\vec{v}: non-noisy signal: n-dimensional vector (in blue below)
\vec{u}: noisy signal: n-dimensional vector (in red below) \textbf{De-noising operator:} from \vec{u}
try to recover \vec{v} (or $\vec{v}' \sim \vec{v}$)
Example: smoothing a 1D signal

Problem: Consider a noisy sampled signal \vec{u} of length n. One wants to reduce noise in this signal.

\vec{v}: non-noisy signal: n-dimensional vector (in blue below)
\vec{u}: noisy signal: n-dimensional vector (in red below) \[\text{De-noising operator: from } \vec{u} \text{ try to recover } \vec{v} \text{ (or } \vec{v}' \sim \vec{v}) \]

Idea: each $\vec{v}[i]$ is taken as the average of $\vec{u}[i - 1], \vec{u}[i], \vec{u}[i + 1]$

\[f(\vec{u}) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \vdots & \ddots & \vdots \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \vec{u}[1] \\ \vec{u}[2] \\ \vec{u}[3] \\ \vdots \\ \vec{u}[n-1] \\ \vec{u}[n] \end{bmatrix} \]

\[f \text{ is a linear map, } f(\vec{u}) \text{ can be written as:} \]

\[f(\vec{u}) = \begin{bmatrix} f(\vec{u})[1] \\ f(\vec{u})[2] \\ \vdots \\ f(\vec{u})[n-1] \\ f(\vec{u})[n] \end{bmatrix} \]

Graphs showing the original and smoothed signals.
Example: smoothing a 1D signal

Problem: Consider a noisy sampled signal \bar{u} of length n. One wants to reduce noise in this signal.

De-noising operator f: $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined as

$$f(\bar{u})[i] = \begin{cases} \bar{u}[i] & \text{if } i = 1 \text{ or } n \\ \frac{1}{3} \bar{u}[i - 1] + \frac{1}{3} \bar{u}[i] + \frac{1}{3} \bar{u}[i + 1] & \text{otherwise} \end{cases}$$
Example: smoothing a 1D signal

Problem: Consider a *noisy* sampled signal \vec{u} of length n. One wants to reduce noise in this signal.

De-noising operator f: $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined as

$$
\begin{align*}
\{ & f(\vec{u})[i] = \vec{u}[i] & \text{if } i = 1 \text{ or } n \\
& f(\vec{u})[i] = \frac{1}{3} \vec{u}[i - 1] + \frac{1}{3} \vec{u}[i] + \frac{1}{3} \vec{u}[i + 1] & \text{otherwise}
\}
\end{align*}
$$

f is a linear map, $f(\vec{u})$ can be written as:

$$
f(\vec{u}) = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1/3 & 1/3 & 1/3 & \ldots & 0 \\
0 & 1/3 & 1/3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1/3 & 1/3 & 1/3 \\
0 & \ldots & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\vec{u}[1] \\
\vec{u}[2] \\
\vec{u}[3] \\
\vdots \\
\vec{u}[n-1] \\
\vec{u}[n]
\end{bmatrix}
$$
Example: smoothing a 1D signal

Problem: Consider a *noisy* sampled signal \vec{u} of length n. One wants to reduce noise in this signal.

De-noising operator f: $f : \mathbb{R}^n \to \mathbb{R}^n$ defined as

\[
\begin{align*}
 f(\vec{u})[i] &= \vec{u}[i] & \text{if } i = 1 \text{ or } n \\
 f(\vec{u})[i] &= \frac{1}{3} \vec{u}[i - 1] + \frac{1}{3} \vec{u}[i] + \frac{1}{3} \vec{u}[i + 1] & \text{otherwise}
\end{align*}
\]
Course 3 - Matrices and linear maps

I Definitions and examples

II Operations and properties

III Linear maps
 1 Definition
 2 Example: geometric transformations of the plane
 3 Characterization
 4 Composition

IV Matrices in Matlab
Definition (Composition of linear maps)

Let \(F : \mathbb{R}^n \to \mathbb{R}^m \) and \(G : \mathbb{R}^m \to \mathbb{R}^p \) be two maps.

The \textit{composition} of \(F \) with \(G \), noted \(G \circ F \), is a map from \(\mathbb{R}^n \) to \(\mathbb{R}^p \) defined by

\[
\forall \vec{u} \in \mathbb{R}^n, G \circ F(\vec{u}) = G(F(\vec{u}))
\]
Linear maps composition

Definition (Composition of linear maps)

Let \(F : \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(G : \mathbb{R}^m \rightarrow \mathbb{R}^p \) be two maps. The *composition* of \(F \) with \(G \), noted \(G \circ F \), is a map from \(\mathbb{R}^n \) to \(\mathbb{R}^p \) defined by

\[
\forall \vec{u} \in \mathbb{R}^n, \; G \circ F(\vec{u}) = G(F(\vec{u}))
\]

Proposition

Let \(F : \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(G : \mathbb{R}^m \rightarrow \mathbb{R}^p \) be two linear maps, defined as \(F(\vec{u}) = A\vec{u} \) and \(G(\vec{v}) = B\vec{v} \).

Then \(G \circ F : \mathbb{R}^n \rightarrow \mathbb{R}^p \) is linear and is defined by

\[
\forall \vec{u} \in \mathbb{R}^n, \; G \circ F(\vec{u}) = BA\vec{u}
\]

Proof: straightforward!
Geometric transformations of the plane

We consider the plane \mathbb{R}^2.

Dilation by a factor $a \in \mathbb{R}$: $D_a : \mathbb{R}^2 \to \mathbb{R}^2$, $D_a(\vec{u}) = a\vec{u}$

D_a is linear.

D_a is defined by $D_a(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = aI_2 \vec{u}$.

Rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$, $R_\theta(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{u}$

Composition of D_a by R_θ: $S : \mathbb{R}^2 \to \mathbb{R}^2$, $S(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u}$
Geometric transformations of the plane

We consider the plane \mathbb{R}^2.

Dilation by a factor $a \in \mathbb{R}$: $D_a : \mathbb{R}^2 \to \mathbb{R}^2$, $D_a(\vec{u}) = a\vec{u}$

D_a is linear.

D_a is defined by $D_a(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = aI_2 \vec{u}$.

Rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \to \mathbb{R}^2$, $R_\theta(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{u}$

Composition of D_a by R_θ: $S : \mathbb{R}^2 \to \mathbb{R}^2$, $S(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = \begin{bmatrix} a \times \cos(\theta) & -a \times \sin(\theta) \\ a \times \sin(\theta) & a \times \cos(\theta) \end{bmatrix} \vec{u}$
Geometric transformations of the plane

We consider the plane \mathbb{R}^2.

Dilation by a factor $a \in \mathbb{R}$: $D_a : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $D_a(\vec{u}) = a\vec{u}$

D_a is linear.

D_a is defined by $D_a(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = aI_2\vec{u}$.

Rotation of angle θ around $\vec{0}$: $R_\theta : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $R_\theta(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{u}$

Composition of D_a by R_θ: $S : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $S(\vec{u}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \vec{u} = \begin{bmatrix} a \times \cos(\theta) & -a \times \sin(\theta) \\ a \times \sin(\theta) & a \times \cos(\theta) \end{bmatrix} \vec{u}$

Composition of R_θ by D_a: $S' : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $S'(\vec{u}) = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \vec{u} = \begin{bmatrix} a \times \cos(\theta) & -a \times \sin(\theta) \\ a \times \sin(\theta) & a \times \cos(\theta) \end{bmatrix} \vec{u}$
Course 3 - Matrices and linear maps

I Definitions and examples
II Operations and properties
III Linear maps
IV Matrices in Matlab
Matrices in Matlab

Matrices are 2 dimensional arrays.

```
>> A=[1,2,3;4,5,6]
>> B=[1,2;3,4;5,6]
```

Create special matrices:

```
>> Z=zeros(2)
>> Z=zeros(2,3)
>> E=eye(2)
>> E=eye(2,3)
>> O=ones(2)
>> O=ones(2,3)
```

Arithmetic:

```
>> A+B
>> A+Z
>> A-B
>> A-Z
>> A' %transpose
>> A'- B
>> a=[5,6,7];
>> A*a %mat-vec mult.: will not work
>> A*a' %mat-vec mult.: will work
>> A*A %mat-mat mult.: will not work
>> A*B %mat-mat mult.: will work
>> A*A'
>> A.*A %elementwise multiplication
>> 2*A
>> (A*A')^2 %powering a square matrix
```
Example: smoothing a 1D signal

Problem: Consider a noisy sampled signal \vec{u} of length n. One wants to reduce noise in this signal.

De-noising operator f: estimate the true value of a component as the average of the nearby components.

$f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined as

$$
\begin{align*}
 f(\vec{u})[i] &= \vec{u}[i] & \text{if } i = 1 \text{ or } n \\
 f(\vec{u})[i] &= \frac{1}{3} \vec{u}[i - 1] + \frac{1}{3} \vec{u}[i] + \frac{1}{3} \vec{u}[i + 1] & \text{otherwise}
\end{align*}
$$
Example: smoothing a 1D signal

Problem: Consider a *noisy* sampled signal \vec{u} of length n. One wants to reduce noise in this signal.

De-noising operator f: estimate the true value of a component as the average of the nearby components.

$f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ defined as

$$f(\vec{u})[i] = \begin{cases} \vec{u}[i] & \text{if } i = 1 \text{ or } n \\ \frac{1}{3} \vec{u}[i - 1] + \frac{1}{3} \vec{u}[i] + \frac{1}{3} \vec{u}[i + 1] & \text{otherwise} \end{cases}$$

f is a linear map, $f(\vec{u})$ can be written as:

$$f(\vec{u}) = \begin{bmatrix} 1 & 0 & 0 & \ldots & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \ldots & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \ldots & 0 \\ \vdots \\ 0 & \ldots & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & \ldots & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \vec{u}[1] \\ \vec{u}[2] \\ \vec{u}[3] \\ \vdots \\ \vec{u}[n - 1] \\ \vec{u}[n] \end{bmatrix}$$
Example: smoothing a 1D signal

Problem: Consider a noisy sampled signal \tilde{u} of length n. One wants to reduce noise in this signal.

De-noising operator f: f is a linear map, $f(\tilde{u})$ can be written as:

$$
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1/3 & 1/3 & 1/3 & \ldots & 0 \\
0 & 1/3 & 1/3 & \ldots & 0 \\
\vdots & & & & \\
0 & \ldots & 1/3 & 1/3 & 1/3 \\
0 & \ldots & 0 & 0 & 1 \\
\end{bmatrix} \begin{bmatrix}
\tilde{u}[1] \\
\tilde{u}[2] \\
\tilde{u}[3] \\
\vdots \\
\tilde{u}[n-1] \\
\tilde{u}[n] \\
\end{bmatrix}
$$

Naive implementation:

```matlab
A=eye(n);
for i=2:n-1
    A(i,i-1:i+1) = [1/3, 1/3, 1/3];
end
A*u;
```
Example: smoothing a 1D signal

Problem: Consider a *noisy* sampled signal \vec{u} of length n.
One wants to reduce noise in this signal.

De-noising operator f: f is a linear map, $f(\vec{u})$ can be written as:

$$f(\vec{u}) = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1/3 & 1/3 & 1/3 & \ldots & 0 \\
0 & 1/3 & 1/3 & \ldots & 0 \\
\vdots & & & & \\
0 & \ldots & 1/3 & 1/3 & 1/3 \\
0 & \ldots & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
\vec{u}[1] \\
\vec{u}[2] \\
\vec{u}[3] \\
\vec{u}[n-1] \\
\vec{u}[n]
\end{bmatrix}.$$

Naive implementation: the signal is sampled at 44100Hz, is 4s long

```matlab
A=eye(n);
for i=2:n-1
    A(i,i-1:i+1) = [1/3, 1/3, 1/3];
end
A*u;
```
Example: smoothing a 1D signal

Problem: Consider a noisy sampled signal \vec{u} of length n.
One wants to reduce noise in this signal.

De-noising operator f: f is a linear map, $f(\vec{u})$ can be written as:

$$f(\vec{u}) = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1/3 & 1/3 & 1/3 & \ldots & 0 \\
0 & 1/3 & 1/3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1/3 & 1/3 & 1/3 \\
0 & \ldots & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix} \vec{u}[1] \\ \vec{u}[2] \\ \vec{u}[3] \\ \vdots \\ \vec{u}[n-1] \\ \vec{u}[n] \end{bmatrix}$$

Naive implementation: the signal is sampled at 44100Hz, is 4s long
\Rightarrow use sparse matrices
Sparse matrices

See https://www.mathworks.com/help/matlab/ref/sparse.html

Example: to create

\[
\begin{bmatrix}
1 & 0 & 0 & \ldots & 0 \\
1/3 & 1 & 0 & \ldots & 0 \\
0 & 1/3 & 1 & \ldots & 0 \\
\vdots \\
0 & \ldots & 1/3 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1
\end{bmatrix}
\]

do

\[
A = \text{sparse}(1:n,1:n,1,n,n) + \text{sparse}(2:n-1,1:n-2,1/3,n,n);
\]