Consider a binary search tree. For a node p, denote by p_{pre} and p_{post} the positions of p in the output sequences of Preorder-Tree-Walk and Postorder-Tree-Walk, respectively.\(^1\)

(a) (2 points) Show that if node q is in node p’s subtree, then $p_{\text{pre}} < q_{\text{pre}}$ and $p_{\text{post}} > q_{\text{post}}$.

Solution: INSERT YOUR SOLUTION HERE

(b) (6 points) Is the converse (i.e., if $p_{\text{pre}} < q_{\text{pre}}$ and $p_{\text{post}} > q_{\text{post}}$, then q is in p’s subtree) true as well? If so, prove it; otherwise, provide a counter example.

Solution: INSERT YOUR SOLUTION HERE

\(^1\)Recall that Preorder-Tree-Walk and Postorder-Tree-Walk print the root before resp. after the values in the subtrees.
Assume that you are given a 2-3 tree T containing n distinct elements.

(a) (4 points) Show how to find the successor of a given element $x \in T$ in time $O(\log n)$.

Solution: INSERT YOUR SOLUTION HERE

(b) (4 points) Show that if the input element x is chosen *uniformly at random* from T, then your procedure from part (a) runs in *expected* time $O(1)$.

Solution: INSERT YOUR SOLUTION HERE

Assume that we wish to augment our 2-3 tree data structure so that each node v maintains a pointer $v.succ$ to the successor of v, so that queries for the successor of an element can be answered in $O(1)$ time *worst-case*.

(c) (6 points) Show that the 2-3 trees can be augmented while maintaining $v.succ$, such that the *INSERT* and *DELETE* operations can still be performed in $O(\log n)$ time. (**Hint:** Think of a doubly-linked list.)

Solution: INSERT YOUR SOLUTION HERE
Consider a binary tree (BT) in which every node v contains a unique key $v.key$ but in which the binary search tree property does not necessarily hold. In this task you will study the effects of using the usual search algorithm for BSTs in such a tree.

(a) (4 points) Consider the edge labeling that assigns 1 to an edge (p, c), where p is the parent of c, if “value in $c >$ value in p and c is the right child of p; or value in $c <$ value in p and c is the left child of $p”$ and 0 otherwise. Prove or disprove: $\text{Tree-Search}(v.key)$ finds v if and only if all edges from the root to v are labeled 1.

Solution: INSERT YOUR SOLUTION HERE

(b) (6 points) For every node v in a BT with real-numbered keys, let $v.low, v.high \in \{-\infty, \infty\} \cup \mathbb{R}$ be such that $\text{Tree-Search}(x)$ traverses v if and only if $x \in (v.low, v.high)$.\(^2\)

Describe in pseudo-code a linear-time algorithm based on pre-order tree traversal that assigns to each node v values $v.low$ and $v.high$ such that the condition above is satisfied. Argue why your algorithm is correct.

Solution: INSERT YOUR SOLUTION HERE

(c) (4 points) Explain how to extend your algorithm in (a) such that it assigns to each node v the value $v.found$ indicating whether v is found if $v.key$ is searched for using Tree-Search.

Solution: INSERT YOUR SOLUTION HERE

\(^2\)Note that if $v.low \geq v.high$, then $(v.low, v.high) = \emptyset$.

Assume we insert sequences of English letters into an empty 2-3-tree, following the standard alphabetical ordering when making comparisons: $A < B < C < \ldots < Z$.

(a) (3 points) Assume you insert the letters $R, E, L, A, T, I, O, N, S$ into a fresh 2-3-tree T in that exact order. Draw the resulting tree. What is its height?

Solution: INSERT YOUR SOLUTION HERE

(b) (4 points) Let h be your answer to part (a). Is it possible to get less than h by inserting the letters from (a) in a different order? If not, prove it. If yes, give the best ordering you can. What is the depth h_{min} you get?

Solution: INSERT YOUR SOLUTION HERE

(c) (3 points) Can you achieve h_{min} with lexicographic order $A, E, I, L, N, O, R, S, T$? Draw the resulting tree.

Solution: INSERT YOUR SOLUTION HERE

(d) (4 points) **Extra credit:** Can you achieve h_{min} for part (b) using an English word that is a permutation of $R, E, L, A, T, I, O, N, S$?

Solution: INSERT YOUR SOLUTION HERE

(e) (4 points) Give an example of a 2-3-tree T with exactly 5 leaves and two distinct values a, b, such that one gets different final trees if one first inserts a into T and then deletes b, instead of first deleting b from T and then inserting a. Explain what happened.

Solution: INSERT YOUR SOLUTION HERE