Sort the following recurrences in increasing order of growth of the corresponding functions. Justify (very) briefly.¹

(a) \(T(n) = 16T(n/4) + n; \)
(b) \(T(n) = 2T(n/4) + n; \)
(c) \(T(n) = 3T(n/5) + \log(n); \)
(d) \(T(n) = 9T(n/3) + n^2; \)
(e) \(T(n) = T(n/3) + 10; \)
(f) \(T(n) = 9T(n/3) + n^3; \)
(g) \(T(n) = 8T(n/2) + n^3. \)

Solution: INSERT YOUR SOLUTION HERE

¹For this entire homework assignment, you may ignore the fact that the argument to \(T \) may not be an integer.
Consider the recurrence \(T(n) = T(\lceil n/4 \rceil) + T(\lceil n/3 \rceil) + n \) with \(T(1) = 1 \).

(a) (4 Points) Using a recursion tree, determine a tight asymptotic upper bound on \(T(n) \).

Solution: INSERT YOUR SOLUTION HERE

(b) (4 Points) Prove your upper bound using induction.

Solution: INSERT YOUR SOLUTION HERE

(c) (4 Points) Using a suitable variable change, solve the recurrence \(U(n) = 3U(\lceil n^{1/3} \rceil) + 7 \) with \(U(2) = 1 \).

Solution: INSERT YOUR SOLUTION HERE
Consider the following recurrence $T(n) = 4T(n/2) + n^2 \log n$, $T(1) = 1$.

(a) (2 points) Can the master’s theorem, as stated in the book, be applied to solve this recurrence? If yes, apply it. If not, formally explain the reason why.

Solution: INSERT YOUR SOLUTION HERE

(b) (4 points) Solve the above recurrence using the recursion tree method.

Solution: INSERT YOUR SOLUTION HERE

(c) (4 points) Formally verify that your answer from part (b) is correct using induction.

Solution: INSERT YOUR SOLUTION HERE

(d) (5 points) Solve the above recurrence exactly using domain-range substitution.

Solution: INSERT YOUR SOLUTION HERE
(a) (6 points) Suppose you have some procedure FASTMERGE that given two sorted lists of length m each, merges them into one sorted list using mc steps for some constant $c > 0$. Write a recursive algorithm using FASTMERGE to sort a list of length n and also calculate the run-time of this algorithm as a function of c. For what values of c does the algorithm perform better than $O(n \log n)$.

Solution: INSERT YOUR SOLUTION HERE

(b) (4 points) Let $A[1 \ldots n]$ be an array such that the first $n - \sqrt{n}$ elements are already in sorted order. Write an algorithm that will sort A in substantially better than $O(n \log n)$ steps.

Solution: INSERT YOUR SOLUTION HERE