Problem 6-1 (Preorder and Postorder Tree Walks) 8 Points

Consider a binary search tree. For a node p, denote by p_{pre} and p_{post} the positions of p in the output sequences of Preorder-Tree-Walk and Postorder-Tree-Walk, respectively.\(^1\)

(a) (2 points) Show that if node q is in node p's subtree, then $p_{\text{pre}} < q_{\text{pre}}$ and $p_{\text{post}} > q_{\text{post}}$.

(b) (6 points) Is the converse (i.e., if $p_{\text{pre}} < q_{\text{pre}}$ and $p_{\text{post}} > q_{\text{post}}$, then q is in p's subtree) true as well? If so, prove it; otherwise, provide a counter example.

Problem 6-2 (Successor of an Element) 14 points

Assume that you are given a 2-3 tree T containing n distinct elements.

(a) (4 points) Show how to find the successor of a given element $x \in T$ in time $O(\log n)$.

(b) (4 points) Show that if the input element x is chosen uniformly at random from T, then your procedure from part (a) runs in expected time $O(1)$.

Assume that we wish to augment our 2-3 tree data structure so that that each node v maintains a pointer $v.succ$ to the successor of v, so that queries for the successor of an element can be answered in $O(1)$ time worst-case.

(c) (6 points) Show that the 2-3 trees can be augmented while maintaining $v.succ$, such that the Insert and Delete operations can still be performed in $O(\log n)$ time. (Hint: Think of a doubly-linked list.)

Problem 6-3 (Search in an Unsorted Tree) 14 Points

Consider a binary tree (BT) in which every node v contains a unique key $v.key$ but in which the binary search tree property does not necessarily hold. In this task you will study the effects of using the usual search algorithm for BSTs in such a tree.

(a) (4 points) Consider the edge labeling that assigns 1 to an edge (p, c), where p is the parent of c, if “value in c > value in p and c is the right child of p; or value in c < value in p and c is the left child of p” and 0 otherwise. Prove or disprove: Tree-Search($v.key$) finds v if and only if all edges from the root to v are labeled 1.

\(^1\)Recall that Preorder-Tree-Walk and Postorder-Tree-Walk print the root before resp. after the values in the subtrees.
(b) (6 points) For every node v in a BT with real-numbered keys, let $v.\text{low}, v.\text{high} \in \{-\infty, \infty\} \cup \mathbb{R}$ be such that $\text{Tree-Search}(x)$ traverses v if and only if $x \in (v.\text{low}, v.\text{high})$.\footnote{Note that if $v.\text{low} \geq v.\text{high}$, then $(v.\text{low}, v.\text{high}) = \emptyset$.}

Describe in pseudo-code a linear-time algorithm based on pre-order tree traversal that assigns to each node v values $v.\text{low}$ and $v.\text{high}$ such that the condition above is satisfied. Argue why your algorithm is correct.

(c) (4 points) Explain how to extend your algorithm in (a) such that it assigns to each node v the value $v.\text{found}$ indicating whether v is found if $v.\text{key}$ is searched for using Tree-Search.

Problem 6-4 (Order Matters!) 14 (+4) points

Assume we insert sequences of English letters into an empty 2-3-tree, following the standard alphabetic ordering when making comparisons: $A < B < C < \ldots < Z$.

(a) (3 points) Assume you insert the letters $R, E, L, A, T, I, O, N, S$ into a fresh 2-3-tree T in that exact order. Draw the resulting tree. What is its height?

(b) (4 points) Let h be your answer to part (a). Is it possible to get less than h by inserting the letters from (a) in a different order? If not, prove it. If yes, give the best ordering you can. What is the depth h_{min} you get?

(c) (3 points) Can you achieve h_{min} with lexicographic order $A, E, I, L, N, O, R, S, T$? Draw the resulting tree.

(d) (4 points) \textbf{Extra credit:} Can you achieve h_{min} for part (b) using an English word that is a permutation of $R, E, L, A, T, I, O, N, S$?

(e) (4 points) Give an example of a 2-3-tree T with exactly 5 leaves and two distinct values a, b, such that one gets different final trees if one first inserts a into T and then deletes b, instead of first deleting b from T and then inserting a. Explain what happened.