Corpus Linguistics for NLP

Adam Meyers
New York University
2017
Outline

• Text Corpora in NLP
• Corpus Selection
• Corpus Annotation:
 – Purpose
 – Representation Issues
 – Linguistic Methods
 – Measuring Quality
• Role of Corpora & Annotation in Final Projects
Corpus Linguistics

• Oxford English Dictionary (OED)
• Dr. Murray:
• Editor for OED from 1879 to 1915
• Dictionary entries was backed up with little slips of paper (the corpora)
• Corpus linguistics is an area of linguistics in which texts are used as evidence
• Like most current corpus linguists, we will focus on electronic, not paper corpora.
Electronic Text Corpora

- Text that was originally electronic (published, letters, etc.)
 - Easiest to process

- Optical Character Recognition
 - May have errors

- Speech Transcripts:
 - Possibly including false starts and other speech-specific language phenomena
 - Human transcripts of spoken language
 - Possible representation of pauses and/or turn taking
 - Automatic Speech Recognition
 - May have errors
 - May be monocase and have no punctuation
 - May represent pauses
Character Encodings:

- Character Encodings = mappings between bytes and characters
- Old Standards (English): ASCII (less than 1 byte), ISO-8859 (2 bytes)
- New standards UTF-8 and UTF-16: More characters/alphabets
 - UTF-8: 128 chars use 1 byte, 1920 chars use 2 bytes, others use 3 or 4 bytes
 - More popular than UTF-16
 - Backwardly Compatible with ASCII
 - Smaller file size
 - More robust recovery from encoding errors
 - UTF-16 encoded in 2-byte and 4-byte units
 - Used for current Windows and supported in some programming languages
 - Backwardly compatible with UCS-2, a mostly obsolete 2-byte Unicode system
- Other encodings: GB (e.g., Chinese), EUC (e.g., Japanese)
Types of Texts

• “Genre” divides text into types along several dimensions
 – **Register?** (socio-ling division by social setting) : Fiction, News, Magazine, Scholarly Article, Legal Documents, Correspondence, Email, Discussion Groups, Twitter, Text Messages, Phone Calls, Instructions, Oral Narratives, Webpages
 – **Topic**: Sports, Games, Art, Natural Science, Social Science, Business, Fiction, Literary Criticism, …

• Spoken language transcripts have different properties from standard written text (published text, correspondence, etc.)
 – **Differences in Basic Units**
 • Pauses/intonation, but no punctuation/capitalization
 – If transcribed at all, representation is not standard
 – **Additional lexical items, syntactic phenomena**
 • Disfluencies: false starts, stutters, ..
 • “uh”, “um”, “like”,
Choosing a Corpus for a Project

• Specialize in a single type of corpus
 – Simplifies study of a language phenomenon
 • If noted, this is normal for academic studies
 – Particular corpus is appropriate for your project
 • A telephone Question Answer system → corpus of phone conversations

• A “Diverse” Corpus
 – For development of versatile system
 – To focus on common features of different genres
 – Keep corpora separate & focus on adaptability of system

• Your own corpus or an existing standard corpus
 – Own corpus requires preparation, but will be suitable for your needs
 • Removing unwanted fields (tables), formating codes, …
 – Standard/Shared Corpus: Next Slide
Standard/Shared Corpora

- Why have shared or standard Corpora?
 - Opportunities for comparison and collaboration
 - Use other's expertise/avoid duplicate effort

- Brown Corpus (Kucera and Frances 1967)
 - 1 million words, sort of open source now
 - “balanced” ("diverse” is easier to define)
 - prose fiction, poetry, news, general interest, government documents, biography, ...

- Work using electronic corpora flourished starting in the 1990s
 - Mostly government sponsored, mostly newspaper corpora
 - Wall Street Journal Corpus, incl Penn Treebank (1 million words)
 - Licensed by Linguistic Data Consortium
 - Depends on what was widely available
 - Hansard Corpus – Canadian French/English Parliamentary Proceedings
 - Europarl – EU parlimentary proceedings

- Return to “diverse” corpora
 - British National Corpus (BNC) – 100 million words, 1994
 - American National Corpus, incl Open American National Corpus (OANC) 2004
 - 21 million words including (15 million words in OANC)
Multi-lingual Corpora

• Parallel Corpora: bi-texts, tri-texts, etc.
 – 2 (or more corpora), such that corresponding segments are (literal) translations of each other
 – Useful for Machine Translation
 – Ex: Hansard, Europarl

• Comparable Corpora
 – 2 (or more corpora) about similar/same topics, e.g., Wikipedia articles in multiple languages
Role of Manual Annotation in CL

• Together, annotation and specifications define a task
 – Can be used to “score” the output of any type of system

• For supervised machine learning, corpus is divided
 – A **Training** corpus is used to acquire statistical patterns
 – A **Test** corpus is used to measure system performance
 – A **Development** corpus is similar to a test corpus
 • Systems are “tuned” to get better results on the Dev corpus
 • Test corpora are used infrequently and system should not be tuned to get better results

• More annotated text often yield more effective patterns

• Different genres may have different properties
 – Systems can “train” separately on different genres
 – Systems can “train” on one diverse corpus
Annotation by Directly Marking Text

- Example: The Penn Treebank
- Input: *This is a sentence.*
- Output: `(S (NP (DT This)))
 (VP (VBZ is)
 (NP (DT a)
 (NN sentence)))
 (. .))`

- Can be difficult to align original text with the annotation
 - Spaces, newlines, etc. not explicitly represented
 - Words --> tokens not always obvious
 - `cannot` --> `can/MD not/RB`
 - `'Tis` → `T-/PRP is/VBZ`
 - `fearlast` → `fear/NN last/JJ`
 - token standardization, typos and other accidental changes
Encoding Annotation with a Markup Language

- Input: *This is a sentence.*
- Output: `<S><NP><DT>This</DT></NP><VP><VBZ>is</VBZ><NP><DT>a</DT><NN>sentence</NN></NP><VP><.></S>`
 - (all on one line, preserving spaces)

- Markup language
 - Markup languages are designed to add information to text and typically distinguish beginning and ending tags `<X>` vs. `</X>`
 - Examples
 - HTML – language for website creation
 - XML, SGML – standards for more specific markup languages
- Programs can treat text and markup separately, e.g., web browsers use html markup as instructions or as special arguments of functions (text color = red, bold, underline, italic, hyperlink, ...).
• Annotation is usually designed so deleting the markup will remove all changes
 – Sed -E 's/<[^>]*>// annotated_file > copy_of_original_file
 – diff original_file copy_of_original_file
• Markup relies on assumption that certain characters will not appear in the original text (< and >)
 – Suppose the corpus included the sentence: “I used an “<NP>” tag today”
 – To handle this special characters are often substituted, e.g., html uses the following codes for ampersands and greater than signs
 • &
 • >
 – See for example http://rabbit.eng.miami.edu/info/htmlchars.html
 – Same/similar codes are often used in non-html text for NLP purposes
 – Adds a layer of complexity for computing character offsets.
 • If we assume & consists of 5 characters, the text must be consistent – if some special characters are left out of the conversion, errors may be introduced.
 • If we assume & is 1 character long, we may want to translate the text back and forth depending on whether we are processing the markup or processing the text.
Offset Annotation

• Many newer annotation frameworks use annotation that “points” to the original file
 – There is a file of plain text containing the words, sentences, etc. being classified.
 – 1 or more annotation files “point” to positions in the original file by via character offsets from the beginning of the file.

• For example, a tag of the form:
 – <S start=”0” end=”57”> could mean that there is a sentence beginning at the start of the file and ending 57 characters after the start of the file.
 – As in many programming environments, positions in strings are before and after characters and begin with 0, e.g.,
 • the python slice: 'This string'[0:4] selects the substring between 0 and 4, assuming:
 \[
 \begin{array}{cccccccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
 T & h & i & s & s & t & r & i & n & g \\
 \end{array}
 \]
Offset Annotation – Slide 2

- Overcomes the shortcomings of other methods
 - No special characters are needed
 - Relation to original text transparent
 - Multiple Annotations with the Same Scheme
 - Easy to Compare (for annotation agreement or system evaluation)
 - Multiple Annotations with Different Schemes
 - Easier to compare, combine, etc.
- Difficult to read without programs (visualization tools, tools that write-out inline tag versions, etc.)
- The Mae tool used for HW1 creates offset annotation
Annotation of Annotation

• Annotation Can be Performed in Layers
 – One Project (or phase) Annotations Constituents
 – Another Project (or phase) Annotations Relationships Between Those Constituents

• Typical Cases:
 – Coreference:
 • Constituents X and Y are “mentions” of one Entity
 – Argument Structure, Event Extraction, Relation Extraction
 • Predicate is in relation R with X as ARG1 and Y as ARG2

• 2 Layers of Annotation for: John and Mary said that they were leaving.
 – NP₁ = [John and Mary], verb₁ = said, NP₂ = [they], S₁ = [that they were leaving]
 – Coref(NP₁,NP₂), ARG0(verb₁,NP₁),ARG1(verb₁,S₁)

• Examples of Projects: ACE, Penn Treebank + PropBank, NomBank and PDTB
Annotation Entry Tools

• Help humans create computationally viable annotation
 – simulate inline annotation, while creating offset annotation

• Well-formedness
 – Only legal labels are permitted
 – Other constraints can be hard-coded (e.g., distance)
 – Constraints can be automated
 – Warning statements can be included for “unusual” labelings

• Ease of Annotation
 – Specification help menus can be included
 – System can automatically propose next item
 – Common options can be automated, e.g., previous tags for particular strings can be proposed by system
The MAE annotation tool

• Original by Amber Stubbs while at Brandeis:
 – http://code.google.com/p/mae-annotation/

• Branch by Keigh Rim, currently a Brandeis PhD student
 – https://github.com/keighrim/mae-annotation/releases

• java -jar mae.jar

• Write dtd file: specifications for annotation

• Load txt file and create xml file

• Process
 – Mae separates the document into 2 XML fields:
 • Copy of original text between: “<TEXT> <![CDATA[“ and “]]></TEXT>”
 • Annotation between <TAGS> and </TAGS>

• Annotation of entities is offset annotation

• Annotation of relations: refers to entity annotation
Additional Capabilities of Mae

- We tagged single words in Mae for HW1
- Mae allows one to tag multiword units
- Mae allows relations between tags
- As with the mention annotation, relations can have additional features as well.
- This is all configured via the .dtd file
AttributionTask Example

• Let's do a little bit of sample “AttributionTask”
 – Load dtd file
 – Load file

• Let's assume the following specifications:
 – The ATTRIBUTION relation links a COMMUNICATOR with a MESSAGE
 – A COMMUNICATOR is an NP that is capable of making a statement. Subcategories include
 • person: fictional or nonfictional human being or a set of people
 • government_entity: country or organization run by a government
 • nongov_organization: corporation, nonprofit, etc. group with a structure
 • Other: must be capable of having a message, e.g., a book/text, cartoon duck, etc.
 – A Message must be either quoted material or a complete sentence, subcategories include
 • direct_quote – a quoted sentence
 • indirect_quote – complement clause (e.g., with “that”)
 • mixed_quote – sentence, part of which is quoted
 • insinutated_attribution – sentence associated with communicator in some other way
 • other: must be a message; must be a sentence that someone communicates, but not covered by specs.
Let's look at the output file in emacs (my preferred text editor).

In this output, character positions begin at the end of [CDATA[– i.e., = 0

Ctrl-U N – does following command N times
 – Ctrl-u N Ctrl-f – moves forward N spaces

The relation (ATTRBIUTION) refer to the IDs of the entities: COMMUNICATOR and MESSAGE

Each annotated tag has several feature=value pairs
 – Some are calculated by the program start/end
 – Others we added in explicitly (function/type/comment)
Now Let's Look at the Penn Treebank and NomBank

• Penn Treebank: wsj_0003.mrg
 - In emacs, Cntrl-Meta-B and Cntrl-Meta-N are useful for finding corresponding brackets particularly in lisp-mode
• NomBank (and PropBank): wsj_0003.nombank
 - Identifies nodes in Penn Treebank Trees
 • Token:length-of-path-from-first-leaf
 - wsj/00/wsj_0003.mrg 10 13 amount 01 5:1*8:0-ARG1 7:0,9:0-Support 13:0-rel
 - File = wsj_0003
 - Tree = 10 (11th tree because count starts with 0)
 - predicate amount(s) = token 11 (staring with 0)
 - sense/roleset number 01 – see lexical entry
 - ARG1 = (NP-SBJ-1 (NN asbestos)) as connected to its empty category
 - Support Chain = used + in (tokens 7 and 9)
Working on Annotation Task

• Goals:
 – Task must describe desired phenomena
 – Humans must be able to make distinctions consistently

• Write detailed specs and test them on data
 – Use multiple annotators
 – Annotator Agreement is Upper Bound for System Output Quality
 • Different levels of agreement may be required for different applications
 – Do annotators agree N %
 • Easy task: N>90%
 • Medium Task: N>85%
 • Difficult Task: N>70%
 • If very low agreement, machine learning will not be able to predict labels

• If results are insufficient, revise specs and test new specs again
 – Repeat until results are good enough for your purpose
Measuring Annotation Quality

- Popular, but imperfect measurement of agreement:

 \[Kappa = \frac{\text{Percent} (\text{Actual Agreement}) - \text{Prob} (\text{Chance Agreement})}{1 - \text{Prob} (\text{Chance Agreement})} \]

 - Kappa works if you can estimate “chance agreement”

- For POS tagging each token gets exactly one tag. So estimates can be based on:
 - tags assigned to previous instances of token
 - tags assigned to tokens in general

- Multiply annotated data can be adjudicated and then each annotator can be scored against the corrected annotation. These same scores are often used for system evaluations:

 \[
 \text{Recall} = \frac{|\text{Correct}|}{|\text{Answer Key}|} \quad \text{Precision} = \frac{|\text{Correct}|}{|\text{System Output}|} \quad F - \text{Score} = \frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} \]

Computational Linguistics Lecture 7
2018
Annotation Tasks Vary in Difficulty

• Penn Treebank Part of Speech Tagging
 – Approximately 97% accuracy/agreement
 – Annotation = Fast process

• Penn Treebank Bracketing Annotation
 – Mid 90s? (a guess)
 – Now mostly by one experienced annotator (Ann Bies)

• PropBank – Approximately 93%
 – About 1 instance per minute

• NomBank – Approximately 85%
 – About 1 instance per 2 minutes

• Temporal Relations – (big variation, approx 75%)

• Sentiment Annotation (about 75%)
Who Should Annotate?

- Most Common for Difficult Annotation
 - NLP/Linguistics Professionals and Students
 - Penn Treebank: Ann Bies
 - Other Experts: Classics students
 - Researchers (small projects)
 - Domain Experts (biology, physics, etc.)

- Crowd Sourcing
 - For easier annotation tasks
 - Some research breaking down hard tasks into sequences of easy ones
Crowd Sourcing

• Unknown annotators contribute via a web browser
• Tasks formulated so non-experts can do OK
 – break down decisions into multiple choice questions
 – use qualification tests
 – do more annotation and filter through consensus
• Amazon Turk: currently the most common conduit
 – Inexpensive (including Amazon's commission)
• Some People have set up their own sites, e.g.:
 – https://anawiki.essex.ac.uk/phrasedetectives/
• Limitation: difficult to formulate sophisticated tasks for crowd sourcing
URLs for (mostly English) text Corpora

• Organizations that distribute corpora (and other resources) for fees
 – Linguistic Data Consortium: https://www.ldc.upenn.edu/
• The British National Corpus: http://www.natcorp.ox.ac.uk/
• American National Corpus (including OANC):
 – http://www.americannationalcorpus.org/
• The Brown Corpus (also through NLTK)
 – http://www.hit.uib.no/icame/brown/bcm.html
 – https://archive.org/details/BrownCorpus
• PubMed Corpus of Scientific Abstracts: http://www.americancorpus.org/
• Links to more links: http://www.americancorpus.org/
• Legal Cases: https://www.courtlistener.com/api/bulk-info/
 – requires registration (see Web of Law on subsequent slide)
URLs for (mostly English) Annotation Projects

• Examples of Shared Tasks with Associated Corpora & Annotation
 – Automatic Content Extraction: Coreference, Named Entities, Relations, Events, English, Arabic, Chinese, Spanish (little bit) – organized by US government
 • https://www.ldc.upenn.edu/collaborations/past-projects/ace
 – CONLL (yearly since 1997, diverse, internationally organized)
 • http://ifarm.nl/signll/conll/
 • I was on the committee for the 2008 & 2009 tasks
 – BIONLP (yearly IE task for biological texts)
 • http://aclweb.org/aclwiki/index.php?title=SIGBIOMED
 – SEMEVAL (yearly semantic tasks: sense disambiguation, sentiment, etc.)
 • 2018 – http://alt.qcri.org/semeval2018/
 • 2017 – http://alt.qcri.org/semeval2017/
 • 2016 – http://alt.qcri.org/semeval2016/
 • Previous listed here: http://www.siglex.org/

• Penn Treebank: http://www.cis.upenn.edu/~treebank/
• PropBank: http://verbs.colorado.edu/~mpalmer/projects/ace.html
• NomBank: http://nlp.cs.nyu.edu/meyers/NomBank.html
• Penn Discourse Treebank: http://www.seas.upenn.edu/~pdtb/
• TimeML (incl TimeBank): http://www.timeml.org/site/index.html
• Pittsburgh Opinion Annotation: http://mpqa.cs.pitt.edu/
Role of Corpora & Annotation in Final Projects

- Programming projects usually require corpora
 - To run system on consistent, well-defined sets of data
- Annotated Data
 - Test Corpus = Answer Key
 - Training & Dev Sets – To develop system and/or train statistical systems
- Multi-Student Projects
 - Some students can be responsible for annotation
 - Creating and Tuning Specifications
 - Annotating and Scoring (Measuring Annotation Quality)
 - Other students can be responsible for creating systems using annotation
- Corpus Creation and/or Annotation Can also be Main Topic of Project
- Crowd Sourcing – Another Possible Technique/Topic
 - Designing Tasks for Crowd Sourcing
 - Combining Crowd Sourced Results
Corpus Being Developed at NYU

- Court Listener Court Opinion Database
 - https://free.law/tag/courtlistener.html
 - Collects and Distributes Court Opinions
 - Provides some Search Capabilities
 - Json format
 - Metadata and text with inline annotation

- Web of Law Project at NYU:
 - Description and Output: https://nlp.cs.nyu.edu/meyers/web_of_law_documents/
 - Some Github projects: https://github.com/AdamMeyers/Web-of-Law
 - Creating text plus offset annotation from Court Listener
 - Current student projects: Information Extraction, Document Classification, English to Spanish MT, and others
 - Citation Graph – connecting citations with files in the corpus or simply identifying which citations are being cited (from previous student project)
 - Sample automatic IE markup for
 - several entity types: citation, person, organization, legal roles, ...
 - relations: Equivalence, Date, Role, Profession, Is_party_of, …
 - Processing 64K supreme court documents, but plans to expand to many other appellate courts
Linguistic Data Consortium

- Lots of Corpora available annotated or not
- NYU has a license (through the library)
- See Catalogue here:
 - https://catalog.ldc.upenn.edu/
- If you have trouble getting corpora from the LDC, let me know and I will help