Short Talks about Final Projects

Adam Meyers
New York University
Outline

• Preliminary Schedule of Talks
• Structure of Talks
• Sample Slides
Schedule of Talks

• Student Talks presented for about 2 classes
 – April 26 and May 1
 – Preliminary Schedule on next 2 slides
• Organized by approximate topic
 – Different talks may be grouped together same group
• Please make schedule changes by email
 – If project is miscellaneous —email me your topic
 • I would like to label and put similar topics together
 – If you need a different day – email me
• Timing different for multi & single person projects
 – Single person: 3 minutes plus 1 minute for questions
 – Multi person: 4 minutes plus 1 minute for questions
 – Extra time allowed for time overages and transitions
Talks on Thursday, April 26
Total Time: 69 minutes

• Document Classification (30 min)
 – M. Vu (3 + 1 min)
 – J. Shang (3 + 1 min)
 – N. Spektor (3 + 1 min)
 – L. Leung (3 + 1 min)
 – M. Ahmed (3 + 1 min)
 – O. Giddens and Z. Kimelheim (4+1 min)
 – B. Peng and J. Wang (4 + 1 min)

• Sentiment Analysis (26 min)
 – C. Dickstein (3 + 1 min)
 – D. Jin and C. Li (4 + 1 min)
 – C. H. Lee and N. Oberman (4 + 1 min)
 – N. Marshall (3 + 1 min)
 – J. Young (3 + 1 min)
 – J. Lee (3 + 1 min)

• Miscellaneous (13)
 – V. Aggarwal and A. Puri (4+ 1)
 – A. D'sa (3 + 1)
 – L. Shi (3 + 1)
Talks on Tuesday, May 1
Total Time: 65 minutes

- Information Extraction (20 min)
 - E. Paik (3 + 1 min)
 - C. Tong (3 + 1 min)
 - R. Abramson (3 + 1 min)
 - B. Diaz (3 + 1 min)
 - M. Meserve (3 + 1 min)
- Machine Translation (9 min)
 - M. Brekke, N. Gheorghe, C. Lopez (4 + 1 min)
 - J. Dorville (3 + 1 min)
- Question Answering (8 min)
 - M. Dinku (3 + 1 min)
 - I. Kulkarni (3 + 1 min)
- Document Summarization (8 min)
 - Z. Guo (3 + 1 min)
 - M. Ligier (3 + 1 min)
- Annotation (4 min)
 - A. Isenber (3 + 1 min)
- Segmentation/POS Tagging (4 min)
 - A. Wang (3 + 1 min)
- Language Identification (4 min)
 - P. Merritt (3 + 1 min)
- Miscellaneous (8 min)
 - A. Yang (3+1)
 - M. Yang (3+1)
Please Send Me Your Slides

• Please send me your slides
 – pdf format preferred
 – please send at least one day before your talk
 – this saves time and makes the talks go smoother in general

• You can send me updated versions later

• You can use your own laptop if you prefer
Suggested Structure of a 3 minute talk

• Estimate rate of talk: 1 slide per minute.
 – So a 3 minute talk should be about 3 slides in addition to any slides you don't discuss

• Possible structure:
 – Slide 1: title and author(s) – Don't discuss
 – Slide 2: problem statement
 – Slide 3: your approach: methods, resources used (lexicons, corpora, programs incorporated), features of data used, algorithms implemented, evaluation
 – Slide 4: One line conclusion
 – Slide 5: References – Don't discuss
Possible Structure for Multi Person Project Talk

- 4 minutes or 1 Minute Per Slide
- Sample Structure
 - Slide 1: title and author(s) – Don't discuss
 - Slide 2: problem statement
 - Slide 3: your approach: methods, resources used (lexicons, corpora, programs incorporated), features of data used, algorithms implemented
 - Slide 4: Roles of Each Participant
 - Slide 5: One line conclusion
 - Slide 6: References – Don't discuss
Other Factors

• Talks in the same topic areas
 – There may be redundancies between talks. You could discuss this and have some of these redundancies be factored out and presented by one person (1 or 2 minutes could be added to the schedule for this). I can provide email addresses if this helps.
 • Project mergers are permitted
 • Other types of coordination are permitted, e.g., a shared evaluation for different methods
 – You could learn from the other talks about resources that will help you with your own project.

• You don't have time to give a detailed account of your approach

• The best talks will communicate the problem and approach to solving it in a conversational manner

• Imagine you explaining this to a non-technical people with short-attention spans: people at a party, relatives, etc.
 – But perhaps a little more technical than that

• Your final project may change a lot from the one you present as a talk, e.g., you may end up incorporating comments from other students or answering their concerns
Sample 3 + 1 Talk

• Next 5 slides represent a hypothetical talk based on some of my MT slides
Sentence Alignment Using Gale Shapey Stable Marriage Algorithm

Adam Meyers
New York University
Sentence Alignment Problem

- Bitexts = Source Language file and sentence by sentence translation
- Sentences may be in different orders
- In order to “train” statistical systems, we need to know which source language sentence corresponds to which target language sentence

```
Run John run       | Corre Sara corre
See John run       | Ve Sara corre
Run Sally run      | Corre Juan corre
See Sally run      | Ve Juan corre
Run Spot run       | Corre Mancha corre
See Spot run       | Ve Mancha corre
...                | ...
```
My Approach

• Score matches by overlap in a bilingual lexicon (supplement with automatic acquisition of additional entries) using Dice

\[\text{Dice} = \frac{2 \times | \text{Match}(S, T) |}{|S| + |T|} \]

• Compare scores of neighboring sentences in 10 X 10 array
 – Choose best match for first sentence by Gale Shapey algorithm, then advance 10 sentence window

• Gale Shapey maximizes choices between 2 sets of competing items, where there are optimal choices, e.g., like a arranging marriages between potential sets of mates
Evaluation and Conclusion

- Corpus: Spanish/English Microsoft Help Text
- Evaluation Metrics: Precision, Recall, F-measure
- Manually aligned Microsoft Help bitext for development
 - 1350 English and 1341 Spanish Sentences
- Manually aligned bitext used for testing
 - 184 English and 181 Spanish sentences
- We achieved F-measure of 95%
Selected References

