Final Project Discussion

Adam Meyers
New York University
Outline

• Goals
• Requirements
• Types of Projects
• Examples
Goals

- Some Version that works, even if more basic than intended
- Clear Description
 - Including what worked and what didn't work
- Relation to Previous Work
 - Related previous conference/journal/workshop papers to your work
- Impact Beyond this Class
 - Step towards Conference submission
 - Distribute-able Software or Other Resource
 - Open source or Commercial
 - Need not be final version
 - Step towards further research
 - Specifications, pilot studies, etc.
 - Preliminary research for later project
Project Time Line

• Project Proposal: Due March 27, 2018
• 30 second Verbal Project Report: April 17, 2018
• First Draft of Final Project: Due April 23, 2018
• Project Talk:
 – Single student projects
 • 3 minutes + 1 minute per questions
 • 3 slides summarizing recommended
 – Multi-student projects
 • 4 minutes + 1 minutes per question
 • 4 slides recommended
 – Presented on April 26 and May 1, 2018
 • Maximum Time = 38 1-student talks * 4 min = 144 min
 • Estimate = (18 1-student talks * 4 min) + (10 multi-student talks * 5 min) = 122 minutes
 • 2 * 75 minute class = 150 minutes
 • At least 6 minutes, but probably 28 minutes maximum leeway
• Final Project Report Due
 – May 15, 2018
Types of Final Projects

• **Programming Project** – a working program, evaluation and a write-up.
 – Includes original NLP implementation
 – Can use output of other system, but should not be only combo of other systems

• **Resource** (lexicon, annotated corpus, etc.) – specifications, evaluation and write-up

• **Survey Paper** – Describe the state of the art for attempted solutions to a particular NLP problem or subfield. Argue for a point of view (have an opinion).
Format

• All projects should include a written paper of approximately 5-10 pages, not including references. (Longer papers permitted).
 – The page length is less important than the content
 – You may hand in other materials in addition to the paper
• Use ACL 2018 style guidelines (suggested, not required)
 – Call for papers: http://acl2018.org/call-for-papers/
 – Format Instructions (assume final submission, not blind review)
 • Word Template: http://acl2018.org/downloads/acl18-word.zip
 • Latex: http://acl2018.org/downloads/acl18-latex.zip
 – Automatically generate bibliography
 – Easier to represent some math formulas
 – https://www.overleaf.com/—Web interface compiles in quickly
Types of Collaboration

• A team project
• A shared task with competing systems
 – 1 group could create the task via annotation and specs
 • That group could also conduct the evaluation
 • They could create the shared task and advertise in the class (or via NYUClasses)
 – Several groups could make systems that run on same data
 – 1 Student could work on ensemble system combining output of other systems
• Trading tasks, e.g., annotating for each other's tasks
• Different Tasks that are part of a pipeline, e.g.,
 – Student/Group 1 does NE extraction
 – Student/Group 2 does Relation extraction using those NEs
 – Student/Group 3 does coreference using NEs
 • relations extracted by Group 2 important feature for coreference system
Considerations for Group Projects

• Group Projects: 2, 3 or 4 students
 – Projects with more than 4 students require a compelling reason that you need more than 4 members
 – Alternative: 2 competing projects
• Divide labor based on individual strengths
• Code writing
 – Version control
 – Write separate components, but agree on input and output specifications
 – If different programming languages, consider using file I/O
• Possibly choose different parts of a pipeline
 – input→system₁ | system₂ | … | systemₙ₋₁ → output
 – Can run on either “gold” or “system” data
Example of How to Work Together

• Student$_1$ and Student$_2$ invent a new task: automatic classification of recipes
 – Recipe = appetizer, dessert; main course; lunch; dinner; breakfast;
 – Ingredients = main ingredient; minor ingredient; garnish; other

• Student$_1$:
 – Writes annotation guidelines
 – Writes up an entry program
 – Annotates data 1 time
 – Adjudicates multiply annotated data
 – Choosing some features for final ML system
 – Designs and runs evaluation on system

• Student$_2$:
 – Sets up corpus: acquires corpus, formats corpus, divides into train, dev and test
 – Writes baseline system for task
 – Annotates data 1 time
 – Coordinates tests of algorithms in Machine Learning Package
 – Chooses some features for final system
Proposal (due 3/27/2018)

• 2 or more pages showing: 1) you have begun working on your project and 2) it is plausible
• Include:
 – Problem Statement or introduction: motivation and/or research question
 – Discuss parts of 3 articles related to your topic from NLP conference, journal or workshop
 • Search the database on: http://aclweb.org/anthology/
 • For multiple person projects, each student should pick different papers
 • Nonacademic and business sources do not count for this requirement
 – Strategy for Solving the Problem
 • Programming Project: Your algorithm and how you plan to implement and test it. Include both
 a simple version that you are confident you can complete before the deadline and a more elaborate
 version that you want to implement if you have time.
 • Resources
 – Annotation Project: initial specifications, a small amount of annotation (e.g., 1 page), and a plan
 on how to achieve a modest amount of high-quality annotation.
 – Lexicon Project: initial specifications, a small number of lexical entries, a word list or method for
 deriving word list, method for deriving dictionary (manual, automatic, semi-automatic)
 • Survey paper: what you plan to read and how you expect it will address the problem statement
• Multi-person projects: indicate the roles each member will play
• Single-person projects: indicate if you would consider teaming up with similar project
• Indicate any other forms of collaboration or competition you are considering
How to Get Started

• Find an area that interests you and read 3 academic papers in that area (to discuss in the proposal).
• A possible goal is to produce a paper similar to one of the ones that you read
• I don't expect a conference-grade paper in ½ semester of work – the beginnings of 1 would be nice
• Figure out how you can evaluate your results (possibly based on what you have read)
• References can lead to more references
• You should read a moderate amount:
 – Don't let reading prevent you from starting to implement code and/or write paper
 – Don't code and write in a vacuum (look at some papers)
Progress Report April 17

• Give a 30 second verbal progress report
 – What you are doing (general subject, no detail)
 – What you have done so far (a list)
 – What you are going to do next (a list)

• For group projects
 – Members of group should go in sequence
 – Each person should say what they have done so far.

• Class of 38 students
 – This should take at most 30 minutes
First Draft Due April 23, 2018

• Programming Project:
 – Tentative Introduction and description of system
 – Run and evaluate at least one version of your system
 – Compare your techniques to some previous work
 – Short descriptions of what you plan to do further.

• Resource Project:
 – Tentative Introduction and description of resource
 – Specifications for resource
 – Samples of items to be found in final resource (entries, annotations, etc.)
 • Sample should be significantly larger than proposal
 – Comparison with some previous work
 – Short descriptions of what you plan to do further

• Paper:
 – Tentative introduction including an indication of your “angle”
 – A nearly complete draft of the paper with a bibliography of at least 10 sources
 • It is OK to have a few sections that are summarized and not written out in detail
 – Most of the sources should be from journals, conferences and workshops about NLP
 • Business articles, blogs, popular periodicals are discouraged as sources
 – A description of what you think needs to be done to finish the paper properly.
Final Submission: Programming Project

• A working program
 – If your program works, but you cannot share it that is OK, but please indicate the issue (e.g., it is owned by your employer).
 – **Implement at least one component yourself**, though including other systems & libraries is expected

• Sample input and Output
 – training/development/test data and output

• A written description:
 – Some NLP references
 – Purpose of program
 – If you incorporate libraries/other programs, be clear about the part of the project that you implemented yourself
 – Description of the algorithms used
 – Description of baseline(s)
 – Evaluation

• Include a “who did what” section for group projects.
Baseline and Full Systems for Programming Projects

- It is useful to compare your results to baselines, systems used for purposes of comparison.
- A (low) baseline system can represent an obvious method that any system should beat
 - For example, for POS taggers, choose most frequent tag for each word based on training corpus, and choose NN for all unknown words.
 - It is possible that such a system could get 75% accuracy (suppose 50% of tokens have only 1 possible tag and another 25% have one tag that makes up at least 50% of the instances).

- Higher baseline systems may be proof-of-concept systems, very basic implementations of what you are doing before adding bells & whistles.
- It is a good idea to mention one or more baselines in your proposal. It is a good idea to guarantee that you can produce something simple, even if you have more exciting things you would like to try.
Sample Programming Projects

• Sequence Labeling
 – Strategies: Rule based, HMM or Other
 – Types: POS tagger, Chunker, NE tagger, Time Expression, …

• Information Extraction
 – Named Entities, Time Expressions, Relations, Events

• Implement Existing NLP Algorithm

• Document Classification
 – Gather features/statistics of documents segmented into classes
 • Genre, Style, Topic, Source, Viewpoint, …
 – Use to Automatically sort an unsegmented set of documents

• Automatic Summarization

• Extend Homework Assignment to Cover New Ground
Final Submission for Annotation Project

- Annotation Specifications
- Annotation Output
- Write-up including:
 - Comparison with previous work
 - Summary of specifications
 - Annotation and evaluation procedures
 - Evaluation Results
Annotation Projects

• Write Specifications & Annotate Documents
 – Find related work and distinguish your approach
 – Find one annotator in addition to yourself, so it is possible to evaluate
 • InterAnnotator Agreement
 – \[Kappa = \frac{Percent\ (Actual\ Agreement) - Prob\ (Chance\ Agreement)}{1 - Prob\ (Chance\ Agreement)} \]
 • Score (precision, recall, f-measure) against a gold standard
 – Multiply annotate and adjudicate to create sample
 – Possible deals:
 • Agree to annotate for another project in exchange for them annotating for you
 • Programmer uses annotation for program project

• Design and Implement Annotation Project using Amazon Turk
 – Figure out a way to use very simple annotation
 – Design a task for Amazon Turk and Run it
 – May cost you a little money ($50 buys a lot of annotation)
Sample Annotation Projects

• Apply a known type of Annotation (NE, POS, Chunking, semantic role labeling) to a new domain of text: web data, technical data, a new language, etc.
• Develop specifications and annotate new classes of NEs, Relations, or Events
• Develop specifications and annotate an interesting phenomenon:
 – quantifier scope
 – sentiment (your version)
 – Idiomatic expressions
Baseline for Annotation Projects

- As an initial experiment, annotate a simpler version of your task to see if you can get reasonable agreement.
- Try Collapsing distinctions in your annotation for purposes of evaluation
 - Example: 2 sense of the adverb *logically*
 - *Logically, they should be able to do it.* [VIEWPOINT]
 - *They should be able to solve the problem logically* [MANNER]
 - If collapsing these sense for evaluation purposes, gives you a better agreement score, you might report both results.
- Try Only annotating a subclass of your data or part of your specs
 - Example1: You are annotating instances of attacks reported in blogs, along with arguments of the attacks (attacker and victim)
 - Initially only annotate sentences containing a limited number of attack words (e.g., *attack, harm, kill, ...*)
 - Example2: You are annotating attack and movement events in news
 - Initially, only annotate *attack* events
Crowd Sourced Annotation: Getting Good Results

- Detailed Specifications (true for any annotation)
- Simplify Task (not expert annotators)
- Use a qualification test (keep out trolls)
- Do short tests of your task
 - Fix task until you are satisfied with results
 - Then run on larger amount of data
- Multiply annotate data and merge, e.g.,
 - 30 groups of 25 examples = 750
 - Each group of 25 is annotated 3 times = 2250
 - 10 annotators each annotate 225 examples (+ 25 qualifying examples)
 - Sample merging strategy: voting
 - If binary classification, always can pick one answer
Final Submission for a Lexicon Project

• The Lexicon Created or Acquired
• Code for any programming components
• If manually created, similar components as with annotation project
• If automatically acquired, similar components as programming project
• Write-up including comparison to previous work and evaluation.
Lexicon Projects

• Motivation
 – What would your lexicon help achieve?
 – How would you test this?

• Strategy for Constructing Lexicon
 – Word List:
 • I can provide large lists of English lemmas (and morphological variants)
 • Lists can be derived from corpora, sorted by frequency
 – Automatic Methods:
 • Even heuristics that are 50% accurate can save time, e.g., for finding a list of place names, this pattern could help: `grep -E 'going to [A-Z][A-Za-z]*'`, especially when applied to a very large corpus (e.g., via a webcrawler)
 – Lexicographer Interfaces (may be programs online)
 • Bad idea to have lexicographers type in features
 – Write up and Test Specifications: similar to annotation

• Evaluation
 – Consistency (like annotation)
 – Demonstrate that information in the lexicon can be used for some application
 • Perhaps with a very primitive program (think proof of concept)
Existing & Future Lexicons

• Existing Lexicons and Databases
 – Comlex Syntax: Syntactic & Semantic
 – Nomlex-Plus, ADJADV: Paraphrase
 – WordNet: Word Sense
 – CIA FactBook: Gazetteer

• New Genres Where Lexicons Could Help:
 – Twitter, and other social media
 – Technical domains
 • Science, Technology, Business, Law, Trades
 • Games, Hobbies, Collectables, ...
Survey Papers

• **Goal**: characterize the benefits/drawbacks of different techniques and to say something about the state of the art or use research to propose and motivate ambitious project. It is good to argue for a particular point of view about your topic. One possibility is that the final paper can look like a very detailed proposal for a future project.

• **Research Areas**: Machine Translation, Summarization, Question Answering, Sentiment Analysis, Information Extraction, Reference Resolution, Predicate Argument Structure, …

• **Sources**:
 – See what J & M cites
 – http://aclweb.org/anthology/
 – I can help you find could sources about your topic

• The result should be a “good” well-written paper.
Other Project Ideas

• Example: An Evaluation Project
 – Propose a system for evaluation and implement it.
 – Evaluate the output of several open source systems using your measure.
 – Compare your measure to previous work

• Any idea that you come up for a project should have most of the following components:
 – A way of succeeding if your original idea turns out to be overly ambitious
 – A method for evaluating your results
 – Citing previous work
 – Major components that are part of Natural Language Processing
Use and Cite Previous Work

• Read and cite previous papers
• Run existing NLP programs to create input to your system
 – But implement some major part yourself
 – Your system should be more than a combination of other packages
• Use corpora, annotation and lexicons created by others as input, training/test/dev data, etc.
• Examples:
 – Parsers or treebanks for annotating pronoun coreference
 – POS tagger, pre-tagged data, existing lexicons
 • Annotation or lexicon of finer grained classes
 • Example: Subclasses of adjectives or adverbs.
The Wall Street Journal Penn Treebank

• Upenn: Trees, POS tags, Noun Groups
 – Some available in HW, more possible
• BBN:
 – NE – Inline annotation – you can convert it to one token per line or use it as is
 • NYUClasses Resources: BBN-NE.tgz
 – Coreference – marks pronoun coreference – there is probably a bit of corpus preparation to make this work
 • Can be made available
Downloadable Tasks with Annotated Corpora (for Testing and/or Training)

• Corpora for Drug-Drug Interaction
 – http://labda.inf.uc3m.es/DrugDDI/DrugDDI.html

• WePS – searching for entities on the Web

• Spanish Corpus with POS tags
 – http://www.comp.lancs.ac.uk/linguistics/crater/spanishfiles.html
Some Downloadable Corpora

• The Open American National Corpus
 – http://www.anc.org/OANC/
 – A variety of different types of data
 – A limited amount of manually annotated data
 – Automatically annotated data from various programs
 – Most annotation is offset annotation

• The Singapore SMS corpus

• Wikipedia XML

• Tweet Corpus (for sentiment)
 – http://help.sentiment140.com/for-students/

• A list of influential corpora in NLP:
 – http://www.lancaster.ac.uk/staff/xiaoz/papers/corpus%20survey.htm
Some Lexicons

- **COMLEX** – available through NYUClasses Resources
 - COMNOM.tgz (most up-to-date version)
- **NOMLEX** and related dictionaries
 - “Those Other Dictionaries” describe the dictionaries
 - “directory linked here” brings you to directory of dictionaries and other resources
 - Everything as one archive file (Nombank 1.0 Release)
- **FrameNet**: https://framenet.icsi.berkeley.edu/fndrupal/
- **CMU Pronunciation Dictionary**: http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- **Subjectivity Lexicon** (and sentiment corpus)
 - http://mpqa.cs.pitt.edu/
Tools and Packages

• Machine Learning Packages, e.g.,
 – OpenNLP (https://opennlp.apache.org/)
 • used for HW6
 – http://textminingonline.com/tag/maxent-classifier

• Some advanced software may be challenging to install/use
 – Moses (open source, state-of-the-art MT system)
 • http://www.statmt.org/moses/

• Parsers
 • http://www.isi.edu/publications/licensed-sw/fanseparser/

• I may be able to help you find a particular type of software
Other Sources for Final Projects

- It is possible to extend a homework assignment into a final project
 - Generalize, Add techniques, etc.
 - Example: POS tagging for Chinese (LDC2007T36.tgz on NYUClasses)

- Website with ML tasks: www.kaggle.com
 - Example: Predict Rotten Tomatoes scores: negative, somewhat negative, neutral, somewhat positive, positive
 https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews

- Shared Tasks – CONLL, MUC, ACE, …
 - Read about the task you are interested first
 - Download if it is open source
 - I can get you access to some (but not all) of the licensed data
Other LDC Corpora

• https://catalog.ldc.upenn.edu/

• Go to LDC catalog
 – For the first time, you can obtain anything in the LDC catalog through the NYU Library
 – Before the Library took over, I could provide access to only a subset of the material
 – Since this is a new process, I suggest investigating it earlier, rather than later, so I can help it go smoothly

 – Contact at the library:
 • Scott A Collard
 • Email: scott.collard at nyu.edu
NYUClasses Resources: Available for Download

• ACE Corpus
 – ACE-events.tgz and plain-ACE-txt.tgz
• Named Entity tags on Penn Treebank
 – BBN-NE.tgz
• Chinese Penn Treebank
 – LDC-2007T36.tgz
• COMLEX Syntax
 – COMNOM.tgz
• More info if you download and need clarification
Web of Law Corpus

• Text versions of 64K supreme court decisions, along with processed versions of the text (sentence split, POS tagged, and several other types of analysis)
• Part of my current research
• There are students currently working on this. Preliminary Information is provided at these links:
 – Files: https://nlp.cs.nyu.edu/meyers/web_of_law.html
 – Programs: https://github.com/AdamMeyers/Web-of-Law
Consider Turning Your Paper into a Conference Paper

• It is Possible that a Really Good Paper could form the basis of a Conference Paper
• If applicable, I will help you find a good venue: conference or workshop
• A published paper can be a major factor in getting into a good graduate program, particularly a PhD program
• Note that most publications have multiple authors, i.e., collaboration may help
Please Ask

• If you need help finding resources or citations relevant to your project, please send me email.
The Final Project Proposal

• Counts as a Homework Assignment
• https://cs.nyu.edu/courses/spring18/CSCI-UA.0480-009/homework6.html