
Parallel Computing

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-UA.0480-003

Lecture 18: CUDA - I

Parallel Computing on a GPU

• GPUs deliver 25 to 200+ GFLOPS on
compiled parallel C applications
– Available in laptops, desktops, and clusters

• GPU parallelism is doubling every year
• Programming model scales transparently

• Data parallelism

• Programmable in C (and other languages)
with CUDA tools (and Opencl too).

• Multithreaded SPMD model uses
application data parallelism and thread
parallelism.
[SPMD = Single Program Multiple Data]

GeForce Titan X

Source: Multicore and GPU Programming: An Integrated Approach by G. Barlas

5

CUDA
• Compute Unified Device Architecture
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

Parallel Threads
• A CUDA kernel is executed by an

array of threads
– All threads run the same code (the SP in SPMD)
– Each thread has an ID that it uses to compute

memory addresses and make control decisions

i = blockIdx.x* blockDim.x+
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

…

Thread Blocks
• Divide monolithic thread array into multiple

blocks
– Threads within a block cooperate via shared

memory, atomic operations and barrier
synchronization, …

– Threads in different blocks cannot cooperate

i = blockIdx.x* blockDim.x+
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

0 1 2 254 255

…

1 2 254 2550

i = blockIdx.x* blockDim.x+
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

1 2 254 2550

i = blockIdx.x* blockDim.x+
threadIdx.x;

C_d[i] = A_d[i] + B_d[i];

…

…… …
7

Kernel

Grid

Block

Thread

• Launched by the host
• Very similar to a C function
• To be executed on device
• All threads will execute that same code in the kernel.

• 1D, 2D, or 3D organization of a Grid
• gridDim.x, gridDim.y, gridDim.zare the size
of the grid in number of blocks

• 1D, 2D, or 3D organization of a block
• Block is assigned to an SM
• blockDim.x, blockDim.y, blockDim.z

are block dimensions counted as number of threads
• blockIdx.x, blockIdx.y, blockIdx.zare indices of
the block within a GRID.

• threadIdx.x, threadIdx.y, threadIdx.z
are the index within a block

IDs

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• Each thread uses IDs to
decide what data to work
on
– Block ID: 1D or 2D or 3D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when
processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

A[0]

vector A

vector B

vector C

A[1] A[2] A[3] A[4] A[N-1]

B[0] B[1] B[2] B[3]

…

B[4] … B[N-1]

C[0] C[1] C[2] C[3] C[4] C[N-1]…

+ + + + + +

A Simple Example: Vector Addition

A Simple Example: Vector Addition

// Compute vector sum C = A+B

void vecAdd (float* A, float* B, float* C, int n)

{

for (i = 0, i < n, i ++)

C[i] = A[i] + B[i];

}

int main()

{

// Memory allocation for A_h, B_h, and C_h

// I/O to read A_h and B_h, N elements

é

vecAdd (A_h, B_h, C_h, N);

}

GPU friendly!

A Simple Example: Vector Addition
#include <cuda.h>

void vecAdd(float* A, float* B, float* C, int n)

{
int size = n* sizeof(float);
float* A_d, B_d, C_d;
…

1. // Allocate device memory for A, B, and C

// copy A and B to device memory

2. // Kernel launch code –to have the device

// to perform the actual vector addition

3. // copy C from the device memory

// Free device vectors
}

CPU

Host Memory

GPU
Part 2

Device Memory

Part 1

Part 3

CUDA Memory Model
• Global memory

– Main means of
communicating R/W
Data between host
and device

– Contents visible to
all threads

– Long latency access
• Shared memory:

• Per SM
• Shared by all

threads in a block

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

CPU & GPU Memory

• In CUDA, host and devices have
separate memory spaces.
– But in recent GPUs we have Unified

Memory Access

• If GPU and CPU are on the same chip,
then they share memory space Ą fusion

15

CUDA Device Memory Allocation

• cudaMalloc()
– Allocates object in the

device Global Memory
– Requires two parameters

• Address of a pointer to
the allocated object

• Size of of allocated
object

• cudaFree()
– Frees object from

device Global Memory
• Pointer to freed object

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

16

CUDA Device Memory Allocation

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Example:

WIDTH = 64;

float* Md

int size = WIDTH * WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);

cudaFree(Md);

CUDA Device Memory Allocation

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

• cudaMemcpy()
– memory data transfer
– Requires four

parameters
• Pointer to destination
• Pointer to source
• Number of bytes copied
• Type of transfer

– Host to Host
– Host to Device
– Device to Host
– Device to Device

• Asynchronous transfer Important!
cudaMemcpy() cannot be used to
copy between different GPUs in
multi-GPUs system

18

CUDA Device Memory Allocation

Grid

Global

Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

Destination
pointer

Source
pointer

Size
in bytes

Direction

Example:

Note About Error Handling

• Almost all API calls return success or
failure.

• The type of the outcome is: cudError_t

• Success Ą cudaSuccess

• Translate the error code to an error
message:

char * cudaGetErrorString (cudaError_t error)

void vecAdd(float* A, float* B, float* C, int n)

{
int size = n * sizeof(float);
float* A_d, * B_d, * C_d;

1. // Transfer A and B to device memory
cudaMalloc((void **) &A_d, size);
cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
cudaMalloc((void **) &B_d, size);
cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);

// Allocate device memory for
cudaMalloc((void **) &C_d, size);

2. // Kernel invocation code ςto be shown later
Χ

3. // Transfer C from device to host
cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
// Free device memory for A, B, C

cudaFree(A_d); cudaFree(B_d); cudaFree (C_d);

}

A Simple Example: Vector Addition

How to launch a kernel?

// Each thread performs one pair-wise addition

__global__

void vecAddkernel(float* A_d, float* B_d, float* C_d, int n)

{

int i = threadIdx.x+ blockDim.x* blockIdx.x;

if(i<n) C_d[i] = A_d[i] + B_d[i];

}

int vecAdd(float* A, float* B, float* C, int n)
{
// A_d, B_d, C_dallocations and copies omitted
// Run ceil(n/256) blocks of 256 threads each
vecAddKernnel<<<ceil(n/256),256>>>(A_d, B_d, C_d, n);

}
#blocks #threads/blks

Unique ID
1D grid of 1D blocks

blockIdx.x *blockDim.x + threadIdx.x;

Unique ID
1D grid of 2D blocks

blockIdx.x * blockDim.x * blockDim.y +
threadIdx.y * blockDim.x +
threadIdx.x;

A Block

blockDim.x

blockDim.y

Unique ID
1D grid of 3D blocks

blockIdx.x * blockDim.x * blockDim.y *
blockDim.z +

threadIdx.z * blockDim.y * blockDim.x +
threadIdx.y * blockDim.x +
threadIdx.x;

Unique ID
2D grid of 1D blocks

int blockId = blockIdx.y * gridDim.x +
blockIdx.x;

int threadId = blockId * blockDim.x +
threadIdx.x;

Unique ID
2D grid of 2D blocks

int blockId = blockIdx.x + blockIdx.y *
gridDim.x;

int threadId = blockId * (blockDim.x *
blockDim.y) +
(threadIdx.y * blockDim.x) +
threadIdx.x;

Unique ID
2D grid of 3D blocks

int blockId = blockIdx.x +

blockIdx.y * gridDim.x;

int threadId = blockId * (blockDim.x *
blockDim.y * blockDim.z) +

(threadIdx.z * (blockDim.x * blockDim.y))
+ (threadIdx.y * blockDim.x)
+ threadIdx.x;

Unique ID
3D grid of 1D blocks

int blockId = blockIdx.x
+ blockIdx.y * gridDim.x
+ gridDim.x * gridDim.y * blockIdx.z;

int threadId = blockId * blockDim.x +
threadIdx.x;

Unique ID
3D grid of 2D blocks

int blockId = blockIdx.x
+ blockIdx.y * gridDim.x

+ gridDim.x * gridDim.y * blockIdx.z;

int threadId = blockId * (blockDim.x *
blockDim.y)

+ (threadIdx.y * blockDim.x)
+ threadIdx.x;

Unique ID
3D grid of 3D blocks

int blockId = blockIdx.x
+ blockIdx.y * gridDim.x
+ gridDim.x * gridDim.y * blockIdx.z;

int threadId = blockId * (blockDim.x *
blockDim.y * blockDim.z) +
(threadIdx.z * (blockDim.x * blockDim.y))

+ (threadIdx.y * blockDim.x)
+ threadIdx.x;

Kernels

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable

from the:

Executed

on the:

Å __global__ defines a kernel function. Must return void

Å __device__ and __host__ can be used together

Å For functions executed on the device:

Å No static variable declarations inside the function

Å No indirect function calls through pointers

The Hello World of Parallel
Programming: Matrix Multiplication

32

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Data Parallelism:
We can safely perform many
arithmetic operations on
the data structures
in a simultaneousmanner.

The Hello World of Parallel
Programming: Matrix Multiplication

33

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

M

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

C adopts raw-major placement approach
when storing 2D matrix in linear memory address.

The Hello World of Parallel
Programming: Matrix Multiplication

A Simple main function: executed at the host

The Hello World of Parallel
Programming: Matrix Multiplication

35

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

// Matrix multiplication on the (CPU) host

void MatrixMulOnHost(float* M, float* N, float* P, int Width)

{

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

double sum = 0;

for (int k = 0; k < Width; ++k) {

double a = M[i * Width + k];

double b = N[k * Width + j];

sum += a * b;

}

P[i * Width + j] = sum;

}

}

i

k

k

j

The Hello World of Parallel
Programming: Matrix Multiplication

The Hello World of Parallel
Programming: Matrix Multiplication

The Kernel Function
37

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

ty

tx

k

k

More On Specifying Dimensions

// Setup the execution configuration

dim3 dimGrid(x, y, z);

dim3 dimBlock(x, y, z);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Important:
• dimGridand dimBlockare user defined
• gridDim and blockDim are built-in predefined

variable accessible in kernel functions

Be Sure To Know:

• Maximum dimensions of a block

• Maximum number of threads per block

• Maximum dimensions of a grid

• Maximum number of blocks per grid

Source: Multicore and GPU Programming: An Integrated Approach by G. Barlas

Tools
Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code (PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with

CPUs, GPUs

Conclusions

• Data parallelism is the main source of
scalability for parallel programs

• Each CUDA source file can have a mixture of
both host and device code.

• What we learned today about CUDA:
– KernelA<<< nBlk, nTid >>>(args)
– cudaMalloc()
– cudaFree()
– cudaMemcpy()
– gridDim and blockDim
– threadIdx and blockIdx
– dim3

