Complexity of DFS

Consider the following generic DFS algorithm

```
function Foo(T)
    if T == NULL then
        return something
    end if
    do_smth1
    for C in T.children do
        call Foo(C) and do_smth2
    end for
    do_smth3
end function
```

Statement. Let tree T consist of n nodes. Then

1. Foo(T) will invoke \(n - 1 \) recursive calls;
2. do_smth1 and do_smth3 will be performed \(n \) times;
3. do_smth2 will be performed \(n - 1 \) time.

Proof. 1. For each non-root node \(C \), there will be exactly one recursive call \(\text{Foo}(C) \) invoked by the unique parent of \(C \). There are \(n - 1 \) non-root nodes.

2. do_smth1 and do_smth3 will be called exactly once for each call of Foo. There will be one initial call and, as we have shown, \(n - 1 \) recursive calls, so the total count is \(n \).

3. For every node \(C \), do_smth2 will be performed in \(\text{Foo}(C) \) the number of times equal to the number of children of \(C \). Hence

\[
\text{the number of do_smth2} = \sum_{C \text{ in the tree}} \text{the number of children of } C
\]

Since every non-root node has exactly one parent, every non-root node is counted in the right-hand side of the above equality exactly once. Thus

\[
\sum_{C \text{ in the tree}} \text{the number of children of } C = \text{the number of non-root nodes} = n - 1.
\]