Lists, trees, and recursive algorithms for them

Definition. L is a list if either

- L is NULL
- or L is a pointer to a data structure with fields data and next, where next is a list.

Definition. T is a tree if either

- T is NULL
- or T is a pointer to a data structure with fields data and children, where children is an array (alternatively, a list) of trees.

Lists

In List L

Out The sum of all data-values in L

function SumIterative(L)
 result = 0
 while $L \neq$ NULL do
 result = result + L.data
 L = L.next
 end while
 return result
end function

In List L

Out The sum of all data-values in L

function SumRecursive(L)
 if L == NULL then
 return 0
 end if
 return L.data + SumRecursive(L.next)
end function
Trees

In Tree T

Out The sum of all data-values in T

\[
\text{function } \text{Sum}(T) \\
\quad \text{if } T == \text{NULL} \text{ then} \\
\quad \quad \text{return } 0 \\
\quad \text{end if} \\
\quad \text{result } = T.\text{data} \\
\quad \text{for } C \text{ in } T.\text{children} \text{ do} \\
\quad \quad \text{result } = \text{result } + \text{Sum}(C) \\
\quad \text{end for} \\
\quad \text{return result} \\
\text{end function}
\]

Note that this scheme can be easily adapted to compute min / max, product, and other similar functions. For example, see the following code for min.

In Tree T

Out The minimum of all data-values in T

\[
\text{function } \text{Min}(T) \\
\quad \text{if } T == \text{NULL} \text{ then} \\
\quad \quad \text{return } \infty \\
\quad \text{end if} \\
\quad \text{result } = T.\text{data} \\
\quad \text{for } C \text{ in } T.\text{children} \text{ do} \\
\quad \quad \text{result } = \min(\text{result}, \text{Min}(C)) \\
\quad \text{end for} \\
\quad \text{return result} \\
\text{end function}
\]

Sometimes, one has to compute more than needed during recursion in order to solve the problem. Consider the following problem

In Tree T

Out The second smallest data-value in T (or ∞ if there are less than two vertices in T)

It can be solved using the following recursive algorithm
In Tree T

Out The pair (a, b), where a and b are the smallest and the second smallest data-values in T, respectively

function TwoMin(T)

if $T == NULL$ then

return (∞, ∞)

end if

min = T. data

second_min = T. data

for C in T. children do

$(C_{\text{min}}, C_{\text{second}}) = \text{TwoMin}(C)$

second_min = min(max(min, C_{min}), second_min, C_{second})

min = min(min, C_{min})

end for

return (min, second_min)

end function