Quick Sort: a randomized sorting algorithm

QSort(L):

choose a “pivot” \(p \) from \(L \) *at random*

partition \(L \) into 3 sublists: \(L_{<p}, L_{=p}, L_{>p} \)

if \(\text{length}(L_{<p}) > 0 \) then \(L_{<p} \leftarrow \text{QSort}(L_{<p}) \)

if \(\text{length}(L_{>p}) > 0 \) then \(L_{>p} \leftarrow \text{QSort}(L_{>p}) \)

return \(\text{append}(L_{<p}, L_{=p}, L_{>p}) \)
Practical implementation:
- use the fast, in-place 3-way partition algorithm from last time
- this partition algorithm makes at most $n - 1$ comparisons, where $n := \text{length}(L)$

Features:
- Expected # of comparisons $= 2n \ln(n) + O(n)$ (for arbitrary inputs)
- With small probability, it can take $\Theta(n^2)$ comparisons
 - if we get unlucky and choose as the pivot the smallest element at every step
- # of swaps \leq # of comparisons + $O(n)$
- Expected # of swaps $= \frac{1}{3} n \ln(n) + O(n)$ (for random inputs)
 - smaller # of swaps \implies better branch prediction & cache behavior
- Good locality of reference (cache friendly)
- essentially an in place sort
- NOT a stable sort
Example:

```
2 6 1 6 5 4 1 8 4 5 5 8 3 4 9 8
p=5
```

```
4 4 1 3 2 4 1 5 5 5 8 8 6 6 8 9
p=2
```

```
1 1 2 3 4 4 4 5 5 5 6 6 8 8 8 9
p=8
```

Intuition for running time:

we split the problem into two problems of “roughly equal” size (in linear time) and then solve both of them

reminds us of the recurrence $T(n) \leq 2T(n/2) + O(n)$

Master Theorem says: $T(n) = O(n \log n)$

BUT . . . this is not rigorous: the splitting step is probabilistic, and we may get some “bad” splits
A quick and dirty analysis of Quick Sort

Idea: leverage our randomized Quick Select analysis

Imagine that L is sorted, and for each $k = 1, \ldots, n$, we can consider the kth element x_k in the sorted list

Suppose x_k appears at levels $0, 1, \ldots, D_k$ in the recursion tree

$W :=$ number of comparisons $\leq \sum_{k=1}^{n}(D_k + 1) \leq \sum_{k=1}^{n} D_k + n$

- Each key is involved in at most one comparison with a pivot at each level

Key observation: the distribution of D_k is precisely the same as the distribution of the recursion depth of $QSelect(L, k)$

Idea: from x_k’s point of view, we are just running $QSelect(L, k)$

Therefore: $E[D_k] \leq \log_{4/3}(n) + 4$ for each k, and

$$E[W] \leq \sum_{k=1}^{n} E[D_k] + n \leq n \log_{4/3}(n) + O(n) \approx 3.48n \ln(n)$$

We’ll give a more careful analysis later: $E[W] \leq 2n \ln(n)$
Expected Depth of Quick Sort Recursion

Let $D := $ depth of the recursion tree for $QSort$ on inputs of length n

Theorem: $E[D] = O(\log n)$

$E[D]$ can also be viewed as the *average height of a randomly built binary search tree*

- Suppose we have n distinct keys that are randomly permuted
- Now we insert the keys into a binary search tree in the permuted order (starting from the empty tree)
- The size and shape of this tree is exactly the same as that of the recursion tree for Quick Sort

We will prove that $E[D] \leq \alpha \ln(n) + O(1)$, where $\alpha \approx 6.95$

Later, we’ll show $E[D] \leq \beta \ln(n) + O(1)$, where $\beta \approx 4.31$
Proof that $E[D] = O(\log n)$

Tail sum formula: $E[D] = \sum_{j \geq 1} \Pr[D \geq j]

Union bound: $\Pr[D \geq j] \leq \sum_{k=1}^{n} \Pr[D_k \geq j]

Last time, we proved: $\Pr[D_k \geq j] \leq (\frac{3}{4})^j n$

So we have: $\Pr[D \geq j] \leq (\frac{3}{4})^j n^2$

A calculation almost identical to that for QSelect

Set $j_0 := \lceil \log_{4/3}(n^2) \rceil$ // = least j such that $(\frac{3}{4})^j n^2 \leq 1$

$$E[D] = \sum_{j \geq 1} \Pr[D \geq j]$$

$$= \sum_{j=1}^{j_0-1} \Pr[D \geq j] + \sum_{j=j_0}^{\infty} \Pr[D \geq j]$$

$$\leq \log_{4/3}(n^2) + 4 \approx 6.95 \ln(n)$$
A better bound on running time of Quick Sort

The input is a list L of n items

Let W_L be a random variable representing the number of comparisons made on an input list L

Define $\widetilde{W}(n)$ the be the maximum value of $E[W_L]$ over all lists L of size at most n

We will show: $\widetilde{W}(n) \leq 2n \ln(n)$

Let R be a random variable representing the relative position (in sorted order) of the randomly chosen pivot

So R is uniformly distributed over $\{1, \ldots, n\}$

If $W_<$ and $W_>$ are random variables representing the number of comparisons made in solving the two subproblems obtained after the partition step, then

$$W_L \leq n - 1 + W_< + W_>$$

comparisons for partitioning

Total expectation:

$$E[W_L] \leq n - 1 + \frac{1}{n} \sum_{i=1}^{n} \left(E[W_< | R = i] + E[W_> | R = i] \right)$$
We have:

\[
E[W_L] \leq n - 1 + \frac{1}{n} \sum_{i=1}^{n} \left(E[W_\prec | R = i] + E[W_\succ | R = i] \right)
\]

\[
\leq n - 1 + \frac{1}{n} \sum_{i=1}^{n} (\bar{\mathcal{W}}(i - 1) + \bar{\mathcal{W}}(n - i))
\]

\[
= n - 1 + \frac{2}{n} \sum_{i=1}^{n-1} \bar{\mathcal{W}}(i)
\]

We prove by (strong) induction on \(n \) that \(\bar{\mathcal{W}}(n) \leq 2n \ln(n) \) for all \(n \geq 1 \)

Assume \(\bar{\mathcal{W}}(i) \leq 2i \ln(i) \) for all \(i < n \)

Let \(L \) be an input of length \(n \)

\[
E[W_L] \leq n - 1 + \frac{2}{n} \sum_{i=1}^{n-1} 2i \ln(i) \leq n - 1 + \frac{4}{n} \int_{1}^{n} x \ln(x) dx
\]

\[
= n - 1 + \frac{4}{n} \left[\frac{1}{4} x^2 (2 \ln(x) - 1) \right]_{1}^{n} = 2n \ln(n) + \frac{1}{n} - 1 \leq 2n \ln(n)
\]

For any \(L' \) of length \(i < n \), we have \(E[W_{L'}] \leq \bar{\mathcal{W}}(i) \leq 2i \ln(i) \leq 2n \ln(n) \)

\(\therefore \) \(\bar{\mathcal{W}}(n) \leq 2n \ln(n) \) \(\surd \)
A better bound on recursion depth of Quick Sort

The recursion tree in more detail . . .

\[N_i := \text{size of node } i \]
\[L_j := \text{set of indices at level } j \]
\[T_j := \sum_{i \in L_j} N_i^p \]

The \(N_i \)'s and \(T_j \)'s are random variables and \(p > 1 \) is a parameter

Claim: \(\mathbb{E}[T_j] \leq \gamma^j n^p \) for \(j = 0, 1, 2, \ldots \), where \(\gamma := \frac{2}{p+1} \)
Proof of claim: \(E[T_j] \leq \gamma^j n^p \) for \(j = 0, 1, 2, \ldots \)

Let’s first prove that \(E[T_1] \leq \gamma n^p \)

\[T_1 = N_2^p + N_3^p \]

Imagine the items are in \(L \) are sorted

Let \(R \) be the index of the pivot in the sorted list

\(R \) is uniformly distributed over \(\{1, \ldots, n\} \)

\(N_2 \leq R - 1 \) and \(N_3 \leq n - R \)

\[
E[(R - 1)^p] = \sum_{i=1}^{n} (i-1)^p/n = \frac{1}{n} \sum_{i=0}^{n-1} i^p
\]

\[
\leq \frac{1}{n} \int_{0}^{n} x^p dx = \frac{1}{n} \cdot \frac{n^{p+1}}{p+1} = \frac{n^p}{p+1}
\]
The distribution of $n - R$ is the same as that of $R - 1$

Thus,

$$E[N_2^p] \leq \frac{n^p}{p + 1}, \quad E[N_3^p] \leq \frac{n^p}{p + 1}$$

and

$$E[T_1] = E[N_2^p] + E[N_3^p] \leq \frac{2}{p + 1} n^p = \gamma n^p$$

Similar to the calculation we made in QSelect, consider any node i in the recursion tree

“Law of total expectation”:

$$E[N_{2i}^p] = \sum_m E[N_{2i}^p | N_i = m] \Pr[N_i = m]$$

$$\leq \sum_m \frac{m^p}{p + 1} \Pr[N_i = m] = \frac{1}{p + 1} E[N_i^p]$$

Similarly, $E[N_{2i+1}^p] \leq \frac{1}{p + 1} E[N_i^p]$

This implies: $E[T_{j+1}] \leq \frac{2}{p + 1} E[T_j] = \gamma E[T_j]$ for $j \geq 0$
Implies claim: $E[T_j] \leq \gamma^j n^p$ for $j \geq 0$ (induction)

Tail sum formula: $E[D] = \sum_{j \geq 1} \Pr[D \geq j]$

Observe: $D \geq j \iff T_j \geq 1$

Markov: $\Pr[T_j \geq 1] \leq E[T_j] \leq \gamma^j n^p$

A calculation almost identical to that for QSelect

Seting $j_0 := \lceil \log_{1/\gamma}(n^p) \rceil$ // = least j such that $\gamma^j n^p \leq 1$

$$E[D] = \sum_{j \geq 1} \Pr[D \geq j]$$

$$= \sum_{j=1}^{j_0-1} \Pr[D \geq j] + \sum_{j=j_0}^{\infty} \Pr[D \geq j]$$

$$\leq \log_{1/\gamma}(n^p) + (p + 1)/(p - 1)$$
We have

$$E[D] \leq \beta \ln(n) + O(1),$$

where

$$\beta = \frac{p}{\ln(1/\gamma)} = \frac{p}{\ln((p + 1)/2)}$$

Graph of β as a function of p

Choosing $p \approx 3.311$ yields $\beta \approx 4.311$ (compare to 6.95)
Tail inequalities for Quick Sort

Question: what is the probability that the *actual* running time exceeds the *expected* running time by a significant amount

- We have: $E[D] \approx 4.311 \cdot \ln(n)$
- Markov says: $\Pr[D \geq 2 \cdot E[D]] \leq 1/2$
- *But we know,* for $\gamma = 2/(p + 1)$:

$$\Pr[D \geq t \ln(n)] \leq \gamma^{t \ln(n)} \cdot n^p = n^{t \ln(n)} \cdot n^p = n^{t \ln(n) + p} = n^{-k}, \text{ where } k := t \ln((p + 1)/2) - p$$

- k maximized at $p = t - 1$ where $k = t \ln(t/2) - t + 1$

Graph of k as a function of t

For $t = 8.622$: $\Pr[D \geq t \ln(n)] \leq n^{-4.97}$

and for $n = 10^6$: $\Pr[D \geq t \ln(n)] \leq 10^{-29.8} \approx 2^{-99}$

- Let $W := \# \text{ of comparisons}$
- We have: $E[W] \approx 2n \ln(n)$

$$W \leq (D + 1)n \implies \Pr[W \geq tn \ln(n) + n] \leq \Pr[D \geq t \ln(n)]$$

$\Pr[W \geq 8n \ln(n) + n] \leq \Pr[D \geq 8 \ln(n)] \leq n^{-4}$

For $n = 10^6$: $\Pr[W \geq 8n \ln(n) + n] \leq 10^{-24} \approx 2^{-80}$