Hashing (1)
The general setup:

- \(\mathcal{U} \) – (large, finite) universe of possible keys
- \(\mathcal{V} \) – (small) set of slots of size \(m \)
 typically \(\mathcal{V} = [0..m) \)
- \(h : \mathcal{U} \to \mathcal{V} \) – a “hash function” from \(\mathcal{U} \) to \(\mathcal{V} \)
 maps keys to slots
- \(T[\mathcal{V}] \) – a “hash table” for storing keys, indexed by \(\mathcal{V} \)

Implementing a dictionary:

- A key \(a \in \mathcal{U} \) is stored in the hash table \(T \) at slot \(s = h(a) \)
- As long as no two keys hash to the same slot (a “collision”), we can perform all dictionary operations (insert, search, delete) in constant time
Resolving collisions by chaining
Dictionary Operations:

- \(\text{insert}(a)\): insert \(a\) in the linked list \(T[h(a)]\)
- \(\text{search}(a)\): search for \(a\) in \(T[h(a)]\)
- \(\text{delete}(a)\): search for and delete \(a\) in \(T[h(a)]\)

Running times:

- insert – \(O(1)\)
- search, delete – \(O(n)\) (worst case)

Worst case occurs when all keys hash to the same slot

Better: choose a \(\text{random}\) hash function — no “pile ups”
Universal Hashing [Carter & Wegman, 1975]

- Λ – a finite, non-empty set of hash function indices
- $\mathcal{H} = \{h_\lambda\}_{\lambda \in \Lambda}$ – a family of hash functions from \mathcal{U} to \mathcal{V}, indexed by $\lambda \in \Lambda$
- $m := |\mathcal{V}|

Def’n: \mathcal{H} is called universal if for all $a, b \in \mathcal{U}$ with $a \neq b$,

$$|\{\lambda \in \Lambda : h_\lambda(a) = h_\lambda(b)\}| \leq \frac{|\Lambda|}{m}.$$

Probabilistic interpretation: if R is a random variable, uniformly distributed over Λ, then

$$\Pr[h_R(a) = h_R(b)] \leq \frac{1}{m}.$$
Using Universal Hash Functions

Assume distinct keys a_1, \ldots, a_n are stored in table

Let $\alpha := n/m =$ “load factor”

Assume R is uniformly distributed over Λ

For $i = 1, \ldots, n$, define

$$S_i := \text{# of keys in slot } h_R(a_i)$$

That is, S_i is the number of keys in the slot occupied by a_i

So S_i measures the cost of looking up a_i in the table

The values R, S_1, \ldots, S_n are random variables.

For each $i = 1, \ldots, n$, we wish to bound $E[S_i]$, which is the expected cost of looking up a_i in the table.
Claim: \(E[S_i] \leq \alpha + 1 \) for each \(i = 1, \ldots, n \).

Proof: for \(i, j = 1, \ldots, n \), define indicator variables

\[
C_{ij} := \begin{cases}
1 & \text{if } h_R(a_i) = h_R(a_j) \\
0 & \text{otherwise}
\end{cases}
\]

For all \(i, j \):

\[
E[C_{ij}] = \Pr[h_R(a_i) = h_R(a_j)] \leq \frac{1}{m} \quad \text{if } i \neq j
\]

\[
= 1 \quad \text{if } i = j
\]

Write \(S_i \) as sum of indicator variables: \(S_i = \sum_{j=1}^{n} C_{ij} \)

By linearity of expectation:

\[
E[S_i] = \sum_{j=1}^{n} E[C_{ij}] = E[C_{ii}] + \sum_{j \neq i} E[C_{ij}]
\]

\[
\leq 1 + (n - 1)/m
\]

\[
\leq \alpha + 1 \quad \text{QED}
\]
interpretation:

- for each i, the expected number of keys in a_i’s slot (including a_i itself) is $\leq \alpha + 1$

- the expected time to perform a single dictionary operation is $O(\alpha + 1)$

- by linearity of expectation, expected time to perform k dictionary operations is $O(k(\alpha + 1))$

special case: $\alpha = O(1)$ (i.e., $n = O(m)$)

- expected time per operation is $O(1)$
Maximum Load: another performance measure

Suppose hash table contains keys \(a_1, \ldots, a_n \), and that \(R \) is uniform over \(\Lambda \)

For \(s \in \mathcal{V} \), define

\[L_s := \# \text{ of } a_i \text{'s that hash to slot } s \text{ under } h_R \]

Set \(M := \max \{ L_s : s \in \mathcal{V} \} \)

We want to bound \(E[M] \), assuming universal hashing

Jensen says: \(E[M]^2 \leq E[M^2] \)

Observe: \(M^2 \leq V := \sum_{s \in \mathcal{V}} L_s^2 \)
Claim: $E[V] \leq (\alpha + 1)n$, where $\alpha = n/m$

We will first argue that $V = \sum_s L_s^2 = \sum_{i,j} C_{ij}$

Let X_{is} be the indicator variable for $h_R(a_i) = s$

We have $L_s = \sum_i X_{is}$

Therefore:

$$V = \sum_s L_s^2 = \sum_s \left(\sum_i X_{is} \right)^2$$

$$= \sum_s \left(\sum_i X_{is} \right) \left(\sum_j X_{js} \right)$$

$$= \sum_s \sum_{i,j} X_{is} X_{js} = \sum_{i,j} \sum_s X_{is} X_{js}$$

$$= \sum_{i,j} C_{ij}$$
So we have

\[V = \sum_{i,j} C_{ij} \]

and by linearity of expectation, we have

\[E[V] = \sum_{i,j} E[C_{ij}] \]

\[= \sum_{i} E[C_{ii}] + \sum_{i \neq j} E[C_{ij}] \leq n + n(n - 1)/m \leq n^2/m + n = (\alpha + 1)n \]

QED
Corollary: \(E[M] \leq \sqrt{(\alpha + 1)n} \)

- Jensen’s inequality says \(E[M]^2 \leq E[M^2] \)
- So \(E[M] \leq \sqrt{E[M^2]} \leq \sqrt{E[V]} \leq \sqrt{(\alpha + 1)n} \)

Special case: \(\alpha = O(1) \)

\[
E[M] = O(\sqrt{n})
\]

- This bound is tight
- Counter-intuitive: it may be the case that \(E[L_s] = O(1) \) for each slot \(s \)

Expected value of max may be much larger than max of expected values