Greedy Algorithms

Example

Interval Scheduling

- Job \(j \) starts at time \(s_j \) and finishes as time \(f_j \)
- Two jobs are compatible if they don’t overlap
- Goal: find maximum subset of mutually compatible jobs

```
for job j = 1 to n
  A ← φ
  if job j is compatible with A
    A ← A ∪ \{j\}
return A
```

Counterexample for earliest finish time first algorithm

```
SORT jobs by finish time so that \( f_1 \leq f_2 \leq \ldots \leq f_n \)
A ← φ
for job j = 1 to n
  if job j is compatible with A
    A ← A ∪ \{j\}
return A
```

```
least interval
earliest start time
fewest conflicts
```
Generic greedy strategy: Consider jobs in some natural order. Take each job provided it’s compatible with the ones already taken

- *Earliest start time:* Consider jobs in ascending order of \(s_j \)
- *Earliest finish time:* Consider jobs in ascending order of \(f_j \)
- *Shortest interval:* Consider jobs in ascending order of \(f_j - s_j \)
- *Fewest conflicts:* For each job \(j \), count the number of conflicting jobs \(c_j \). Schedule in ascending order of \(c_j \)
Interval scheduling: greedy algorithms

Consider jobs in some natural order. Make each job provided it is compatible with the ones already taken:

- Earliest start time [earliest start time]
- Shortest interval [shortest interval]
- Fewest conflicts

A proposition that implements earliest finish time first takes \(O(n \log n) \) time.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts
Interval scheduling: “earliest finish time first” algorithm

Sort jobs by finishing time so that $f_1 \leq f_2 \leq \cdots \leq f_n$

$A \leftarrow \emptyset$ // set of jobs selected

for j in $[1..n]$ do
 if job j compatible with A then
 $A \leftarrow A \cup \{j\}$

return A

$O(n \log n)$ time implementation:

• Keep track of last job j^* added to A
• Job j compatible with $A \iff s_j \geq f_{j^*}$
• Sorting takes $O(n \log n)$ time
Theorem

“earliest finish time first” algorithm is optimal

Proof (by contradiction)

Assume greedy not optimal

Suppose for some input of size n:

- greedy produces solution $j_1 < j_2 < \ldots < j_k$
- there is a better solution $j'_1 < j'_2 < \ldots < j'_\ell$, where $\ell > k$

Assume this is the smallest n for which greedy is not optimal
• greedy produces solution $j_1 < j_2 < \cdots < j_k$
• there is a better solution $j'_1 < j'_2 < \cdots < j'_\ell$, where $\ell > k$
• n chosen minimally

Let C be the set of jobs that are compatible with job j_1

$C = \text{set of jobs with start time } \geq f_{j_1}$

Example:

```
Example:           greedy: $(j_1,j_2,j_3) = (b,e,h)$

C = \{e,f,g,h\}
```

The sequence j_2, \ldots, j_k is a greedy solution for C

Since $f_{j'_1} \geq f_{j_1}$, jobs j'_2, \ldots, j'_ℓ are compatible with job j_1

The sequence j'_2, \ldots, j'_ℓ is a better solution for C

This contradicts the minimality of n
A general approach to proving optimality of greedy algorithms

Proof by contradiction: assume that greedy is not optimal

So there is a counter-example: an input I and a strategy S such that S beats greedy on input I

Assume that the counter-example is as small as possible (with respect to some natural notion of input size)

Construct a smaller counter-example: a smaller input I' such and a strategy S' that beats greedy on input I'

- This contradicts the minimality of the counter-example
- This is usually done by transforming (I, S) into (I', S')
Limitations of greedy approach

- Minor variations may not be solvable by greedy approach
 - *Example*: suppose each job in the interval scheduling problem has a non-negative “value”
 - We want to maximize the total value of all scheduled jobs (rather than number of jobs)
 - Greedy approach fails (homework)
 - Dynamic programming applies (homework)
- Greedy algorithms can be tricky to design
- Proofs of correctness can be tricky to get right
Example

Huffman Encoding Problem

Let w_1, \ldots, w_n be non-negative weights.

Let T be a binary tree, with each w_i labeling some leaf of depth d_i.

Define $\text{Cost}(T) := \sum_i w_id_i$.

Problem: given w_1, \ldots, w_n, find a minimal cost T.

Without loss of generality, we may assume T is a full binary tree, i.e., each non-leaf has two children.
Example:

Application: optimal prefix-free binary encoding

- w_i represents probability of symbol σ_i
- path in tree represents a bit string encoding
- $\text{Cost}(T)$ is expected encoding length
- prefix-free property allows for unambiguous parsing of strings

Encodings: $A \Rightarrow 000, B \Rightarrow 001, C \Rightarrow 010, D \Rightarrow 011, E \Rightarrow 1$

$A \Rightarrow 010, B \Rightarrow 10, C \Rightarrow 011, D \Rightarrow 111, E \Rightarrow 00$
For a tree T, define its \textit{weight} to be the sum of weights of its leaves

Greedy Algorithm:

- Start with a forest of n leaves
- Repeat $n - 1$ times:
 - Take two trees T_1, T_2 in the forest of least weight, and join them:

Implement using a heap. Running time: $O(n \log n)$
Theorem
This greedy algorithm produces a least-cost tree.

Lemma 1
Let T be a full binary tree with weights $w(\nu)$ assigned to leaves ν. Suppose ν_1, ν_2 are leaves of smallest weight. We can construct a new tree T' from T such that

1. the leaves of T' and T are the same,
2. ν_1 and ν_2 are siblings in T', and
3. $\text{Cost}(T') \leq \text{Cost}(T)$.
Proof of Lemma 1. Assume v_1, v_2 not siblings in T

Let $d_i := \text{depth of } v_i \text{ in } T \text{ for } i = 1, 2$

Assume $d_1 \geq d_2$ and let $\Delta := d_1 - d_2$

Moving v_2 down increases cost by $\Delta \cdot w(v_2)$

All leaves in T_1 have weight $\geq w(v_2)$ (because v_1, v_2 have least weight), and so moving T_1 up decreases cost by at least $\Delta \cdot w(v_2)$
Lemma 2

Let T be a full binary tree with weights $w(v)$ assigned to leaves v. Suppose v_1, v_2 are leaves that are siblings in T with parent v_3, and that we create a new tree \tilde{T} by deleting v_1 and v_2 and set $w(v_3) := w(v_1) + w(v_2)$:

$$w(v_3) = w(v_1) + w(v_2).$$

Then $\text{Cost}(\tilde{T}) = \text{Cost}(T) - w(v_1) - w(v_2)$.

Proof. Let $d =$ depth of v_3 in T

v_1 and v_2 contribute $(d + 1)(w(v_1) + w(v_2))$ to $\text{Cost}(T)$

v_3 contributes $d(w(v_1) + w(v_2))$ to $\text{Cost}(\tilde{T})$
Proof of Theorem (by contradiction)

Suppose that on some input of size \(n \), the greedy algorithm produces the tree \(T \), but there exists a tree \(X \) with \(\text{Cost}(X) < \text{Cost}(T) \)

Assume that this counter-example is chosen with \(n \) as small as possible

We must have \(n > 2 \) (otherwise, no better solution)

Consider the first step of the greedy algorithm, which joined two leaves \(v_1, v_2 \) of smallest weight

\(v_1 \) and \(v_2 \) are siblings in \(T \)
Apply Lemma 1 to X, obtaining a new tree X' in which v_1 and v_2 are siblings, and $\text{Cost}(X') \leq \text{Cost}(X)$

Apply Lemma 2 to both T and X', removing v_1 and v_2, obtaining trees \tilde{T} and \tilde{X}' such that

$$\text{Cost}(\tilde{T}) = \text{Cost}(T) - s, \quad \text{Cost}(\tilde{X}') = \text{Cost}(X') - s$$

where $s := w(v_1) + w(v_2)$

\tilde{T} is also a tree that would be produced the greedy algorithm

It follows that

$$\text{Cost}(\tilde{X}') = \text{Cost}(X') - s \leq \text{Cost}(X) - s < \text{Cost}(T) - s = \text{Cost}(\tilde{T})$$

This contradicts the assumption that n was chosen as small as possible