Strongly Connected Components

Let $G = (V, E)$ be a directed graph.

Write $u \sim v$ if there is a path from u to v in G.

Write $u \sim v$ if $u \rightarrow v$ and $v \rightarrow u$.

\sim is an equivalence relation:

- $u \sim u$
- $u \sim v$ implies $v \sim u$
- $u \sim v$ and $v \sim w$ implies $u \sim w$

\sim’s equivalence classes are called the strongly connected components (SCC’s) of G.

For $v \in V$, $C(v) := v$’s SCC.
The component graph

Idea: collapse each SCC’s into a single node

Formally: component graph $G^{\text{SCC}} = (V^{\text{SCC}}, E^{\text{SCC}})$

$V^{\text{SCC}} = \text{the SCC’s } C_1, \ldots, C_k \text{ of } G$

$E^{\text{SCC}} = \{(C_i, C_j) : i \neq j, (u, v) \in E \text{ for some } u \in C_i, v \in C_j\}$
Lemma 1. $u \leadsto v$ in $G \iff C(u) \leadsto C(v)$ in G^{SCC}
Lemma 2. G^{scc} is acyclic.

- Suppose there is a cycle.
- By definition, no self loops in G^{scc}, so the cycle must contain two distinct nodes, say $C(u)$ and $C(v)$
- Then we have $C(u) \leadsto C(v)$ and $C(v) \leadsto C(u)$ in G^{scc}
- By Lemma 1, $u \leadsto v$ and $v \leadsto u$ in G
- Thus, $C(u) = C(v) \Rightarrow \Leftarrow$
- QED
An application

Consider the “gathering coins” problem for a general directed graph

- Given a directed graph $G = (V, E)$
- On each node v there are $N[v]$ coins
- Goal: find the max number of coins that can be gathered on any one path through G
- The path need not be simple, but once you pick up the coins on a node, they are gone
We already know how to solve this for a DAG
For a general graph, we start by computing G^{scc}
For each SCC C, we assign to it $\sum_{v \in C} N[v]$ coins
Now run the DAG algorithm on G^{scc}

Example:

![Diagram](image)

General principle: Try to reduce questions about graphs to questions about DAG’s
Another application

Problem: A graph $G = (V, E)$ is called *semi-connected* if for all $u, v \in V$, $u \leadsto v$ or $v \leadsto u$.

Show how to test if G is semi-connected.
First consider the problem for DAG’s

Let \(\nu_1, \ldots, \nu_n \) be a topological sort of \(G \)

Claim: \(G \) is semi-connected \(\iff \) there is an edge \(\nu_i \to \nu_{i+1} \) for each \(i = 1 \ldots n - 1 \)
Now consider a general graph

Claim: G is semi-connected $\iff G^{\text{scc}}$ is semi-connected (follows directly from Lemma 1)

Algorithm:

1. Run algorithm SCC to get G^{scc} (which is a DAG)
2. Test if G^{scc} is semi-connected (as above)
Computing SCC’s: the Kosaraju/Sharir Algorithm

The idea

Somehow (by magic) find a node in a “sink” component and perform DFS from there.
Computing SCC’s: the Kosaraju/Sharir Algorithm

For a graph G, let G^T denote its “transpose” or “reverse” — same as G but with all edges reversed. G and G^T have the same SCC’s — in fact, $(G^T)_{\text{scc}} = (G_{\text{scc}})^T$.

Algorithm $SCC(G)$:

1. call $DFS(G)$, and order the nodes v_1, \ldots, v_n in order of decreasing finishing time (as in $DFSTopSort$).
2. compute G^T.
3. call $DFS(G^T)$ — but in the top-level loop, process in the order v_1, \ldots, v_n.

the trees in the DFS forest are the SCC’s of G.

Running time: $O(|V| + |E|)$
Example:
Notation: let $f[u]$ be the finish time in the *first* DFS, and let $f(U) := \max \{ f[u] : u \in U \}$

Lemma 3. Suppose $(C, C') \in E^{\text{scc}}$. Then $f(C) > f(C')$

Proof. In the first DFS, let x be the first node discovered in $C \cup C'$

Case 1: $x \in C$

By the White Path Theorem, all nodes in $C \cup C'$ are descendents of x in the DFS forest

By the Parenthesis Theorem, $f[x] = f(C) > f(C')$
Case 2: \(x \in C' \)

By the White Path Theorem, all nodes in \(C' \) are descendents of \(x \) in the DFS forest

By Lemma 2, there is no path from \(C' \) to \(C \) in \(G^{\text{sc}} \), and so no node in \(C \) is reachable from \(x \)

so at time \(f[x] \), all nodes in \(C \) are still white

\[\therefore f(C) > f[x] = f(C') \]. QED
Theorem. Algorithm SCC is correct.

Proof. Let T_1, \ldots, T_ℓ be the trees of the DFS forest created in step 3

Let C_1, \ldots, C_k be the SCC’s, ordered with $f(C_i) > f(C_{i+1})$
At step 3, we start with a vertex x_1 in C_1
By White Path Theorem, all nodes in C_1 will be in T_1
By Lemma 3, in G^T, there are no edges leaving C_1
\therefore the nodes of C_1 are exactly the nodes of T_1
Next, we pick a node in C_2, and at this time, all nodes in C_1 are black, and all nodes in C_2, \ldots, C_k are white.

By White Path Theorem, T_2 contains all nodes in C_2, and by Lemma 3, T_2 contains no other nodes.

\therefore the nodes of C_2 are exactly the nodes of T_2.

Proceeding by induction, we get $T_i = C_i$ for $i = 1, \ldots, \ell$, and so $k = \ell$. QED.
Representation of G^{scc}

- Let C_1, \ldots, C_k be the SCC’s
- Number the nodes $1 \ldots k$
- Standard adjacency list representation of G^{scc}
- Also:
 - An array mapping $v \in V$ to $j \in \{1, \ldots, k\}$, where $v \in C_j$
 - An array mapping $j \in \{1, \ldots, k\}$ to a list representation of C_j
- This can all be done in time $O(|V| + |E|)$, and we may assume that C_1, \ldots, C_k are already in topological order — in fact Algorithm SCC outputs C_1, \ldots, C_k in topological order
Connectivity in undirected graphs

Suppose G is undirected

$$(u, v) \in E \iff (v, u) \in E$$

SCC’s are just called *connected components*

The component graph consists of isolated nodes — no edges between components

Easy to compute: the trees in the DFS forest are the connected components