Depth First Search (DFS)

An extremely simple, fast, recursive algorithm to visit all nodes reachable from a given node.

Let $G = (V, E)$ be a graph.

We assume adjacency list (i.e., sparse) representation.

Algorithm $BasicDFS(u)$:

```
// Visit u
mark u as “visited”
for each $v \in Successor(u)$ do
  // Explore the edge $u \rightarrow v$
  if $v$ is not marked “visited” then
      $BasicDFS(v)$
```
DFS Tree
Solid edge from u to v
means recursive call on u
made recursive call on v
DFS Tree

Solid edge from \(u \) to \(v \) means recursive call on \(u \) made recursive call on \(v \)
BasicDFS: essential properties

Fact: BasicDFS runs in linear time — $O(|V| + |E|)$

Each node gets visited at most once
Each edge gets explored at most once
BasicDFS: essential properties

Fact: a node v in V gets marked “visited” \iff there is a path from (initial) u to v (i.e., v is “reachable” from u)

(\implies): obvious (only actual paths are explored)

(\impliedby): kind of obvious...

- consider a path $u = v_0 \to \cdots \to v_k$
- prove by induction on i that v_i gets marked visited...
 - Base case: $i = 0 \checkmark$
 - Assume for i and prove for $i + 1$: when we visit v_i, since $v_{i+1} \in \text{Successor}(v_i)$, we explore the edge $v_i \to v_{i+1}$ — either v_{i+1} has already been visited or we will visit it immediately
“Full” DFS: bells and whistles

We visit all the nodes in the graph
while some nodes are unvisited do:
 pick one and start “Basic DFS” from there

Instead of a single DFS tree, the defines a “DFS forest” with one or more DFS trees

• When we explore an edge $u \rightarrow v$ and discover a new, unvisited node v, we record the edge $u \rightarrow v$ we will set $\pi[v] = u$
• $\pi[v] = u$ means u is the parent of v in the DFS forest

We “timestamp” each node with a “discovery time” and a “finish time”

We “color” each node:
• white: undiscovered
• gray: visited but not finished (still on the call stack)
• black: finished
“Full” DFS

Algorithm $DFS(G)$:

for each $v \in V$ do: $Color[v] \leftarrow \text{white}$, $\pi[v] \leftarrow \text{Nil}$
$time \leftarrow 0$

for each $v \in V$ do
 if $Color[v] = \text{white}$ then $RecDFS(v)$

Algorithm $RecDFS(u)$:

$Color[u] \leftarrow \text{gray}$
$d[u] \leftarrow ++time$ // discovery time

for each $v \in \text{Successor}(u)$ do:
 if $Color[v] = \text{white}$ then
 $\pi[v] \leftarrow u$, $RecDFS(v)$

$Color[u] \leftarrow \text{black}$
$f[u] \leftarrow ++time$ // finish time
DFS Forest:

- Tree edge
- Forward edge
- Back edge
- Cross edge
Running Time Analysis:

- Each node is discovered once
- Each edge is explored once
- Running time $= O(|V| + |E|)$
u discovered
- gray nodes are on run-time stack

u finished

Some Back, Forward, and Cross edges
For $u, \nu \in V$, “$u \subseteq \nu$” means that u lies below ν in the DFS forest (possibly $u = \nu$), and “$u \sqsubset \nu$” means u lies strictly below ν (so $u \neq \nu$)

We can also write $u \supseteq \nu$ to mean $\nu \subseteq u$, i.e., u lies above ν in the DFS forest

Parenthesis Theorem

For all $u, \nu \in V$, exactly one of the following holds:

1. $[d[u], f[u]] \cap [d[\nu], f[\nu]] = \emptyset$, $u \not\sqsubset \nu$, and $\nu \not\sqsubset u$

2. $[d[u], f[u]] \subseteq [d[\nu], f[\nu]]$, and $u \sqsubseteq \nu$

3. $[d[u], f[u]] \supseteq [d[\nu], f[\nu]]$, and $u \supseteq \nu$
Classification of edge $u \rightarrow v$

- **Tree edge**: in the DFS forest ($u \subseteq v$)
 - v was *white* when $u \rightarrow v$ was explored;
 $(d[u] < d[v] < f[v] < f[u])$

- **Back edge**: $u \subseteq v$ (includes self loops)
 - v was *gray* when $u \rightarrow v$ was explored
 $(d[v] \leq d[u] < f[u] \leq f[v])$

- **Forward edge**: a non-tree edge, $u \supseteq v$
 - v was *black* when $u \rightarrow v$ was explored, but *white* when u was discovered
 $(d[u] < d[v] < f[v] < f[u])$

- **Cross edge**: $u \not\subseteq v$ and $u \not\supseteq v$
 - v was *black* when $u \rightarrow v$ was explored, and *black* when u was discovered
 $(d[v] < f[v] < d[u] < f[u])$
 - points “into the past” (right to left)
White Path Theorem

Let \(u, \nu \in V \).

\[u \succeq \nu \iff \begin{cases} \text{at the time } u \text{ is discovered, there is} \\ \text{a path from } u \text{ to } \nu \text{ consisting only of} \\ \text{white nodes} \end{cases} \]

(\Rightarrow) Assume \(u \succeq \nu \)
White Path Theorem

Let $u, v \in V$.

$u \supseteq v \iff$

- at the time u is discovered, there is a path from u to v consisting only of white nodes

(\Leftarrow) Let $u = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k = v$ be the white path

Claim: $u \supseteq v_i$ for all i. Assume not, and let i be minimal such that $u \nsubseteq v_i$ for $i > 0$ $\Rightarrow \Leftarrow$
Topological Sorting — Tarjan’s Algorithm

Algorithm DFSTopSort

- initialize an empty list
- Run DFS: When a node is painted *black*, insert it at the front of the list
- If we ever discover a back edge, report that the graph is cyclic

So we output vertices on order of *decreasing* finishing time

As a bonus, if there is a cycle, we can actually print it out
Let's get rid of the back edge

Arrange from highest to lowest finishing time
Lemma

G has a cycle \iff DFS produces a back edge

Proof:

- (\Leftarrow) A back edge trivially yields a cycle
• (⇒) Suppose G has a cycle C of vertices, and let ν be the first vertex discovered in C:

By the White Path Theorem, u lies below ν in the DFS forest

:. the edge $u \rightarrow \nu$ is a back edge
Theorem

Algorithm DFSTopSort is correct

Proof:

• Let \((u, v) \in E\)
• We want to show \(f[u] > f[v]\)
• Cases:
 ◦ \((u, v)\) is a tree edge: \(u \preceq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 ◦ \((u, v)\) is a back edge: impossible, since \(G\) is acyclic
 ◦ \((u, v)\) is a forward edge: \(u \preceq v\) and \(d[u] < d[v] < f[v] < f[u]\)
 ◦ \((u, v)\) is a cross edge: \(f[v] < d[u] < f[u]\)
• QED