Divide and Conquer

A first example: Merge Sort

A generic recursive sorting algorithm

Input: a list L
Output: a sorted list

if $|L| \leq 1$ then // $|L|$ means length of L
 return L
else
 split L into two nonempty sublists L_1 and L_2
 recursively sort L_1 and L_2
 return $merge(L_1, L_2)$
A linear time merge algorithm

\[\text{merge}(L_1, L_2) \]
Input: sorted lists \(L_1 \) and \(L_2 \)
Output: a sorted list \(L \)

initialize \(L \) to empty list
while \(L_1 \) and \(L_2 \) are both non-empty do
 if \(\text{head}(L_1) \leq \text{head}(L_2) \) then
 move \(\text{head}(L_1) \) to tail of \(L \)
 else
 move \(\text{head}(L_2) \) to tail of \(L \)

while \(L_1 \) not empty do
 move \(\text{head}(L_1) \) to tail of \(L \)

while \(L_2 \) not empty do
 move \(\text{head}(L_2) \) to tail of \(L \)

Running time analysis:

each loop iteration moves one element to \(L \)
\[\Rightarrow \text{total number of loop iterations} \ |L_1| + |L_2| \]
An array implementation

Input: sorted arrays $A[0..m)$, $B[0..n)$
Output: sorted array $C[0..m+n)$

$i \leftarrow 0$, $j \leftarrow 0$, $k \leftarrow 0$
while $i < m$ and $j < n$ do
 if $A[i] \leq B[j]$ then
 $C[k++] \leftarrow A[i++]$
 else
 $C[k++] \leftarrow B[j++]$

while $i < m$ do
 $C[k++] \leftarrow A[i++]$

while $j < n$ do
 $C[k++] \leftarrow B[j++]$
Back to our recursive sorting algorithm . . .

Let $n = |L|$

Total running time:

- the "local computation" time: $O(n)$, plus
- the time spent in the recursive calls

The total running time is determined by the strategy used to split L into two sublists

Unbalanced strategy: always split L into sublists of size $n - 1$ and 1

total time is $O(T)$, where

$$T = n + (n - 1) + (n - 2) + \cdots + 1$$

$\implies O(n^2)$ running time (essentially insertion sort)
Balanced strategy: the Merge Sort Algorithm

Always split L into two sublists of (roughly) equal size

Running time analysis using a **recursion tree**:

- Every node in the tree corresponds to a single call
 - its children correspond to the recursive calls
- We associate with each node with the *subproblem size* and *local cost* of the corresponding call
- We add up all the local costs — usually level by level
Example: $n = 8$

More generally, assume $n = 2^k$

At level $j = 0, \ldots, k$:

- 2^j nodes, each with local cost 2^{k-j}
- Cost per level: $2^k = n$
- Total cost: $n(k + 1) = O(n \log n)$
More observations

Good news:

- Merge Sort is a *stable* sort: items whose keys have equal value retain their relative positions

Bad news:

- The array implementation of Merge Sort is not *in place*: $O(n)$ auxiliary space is needed
Divide and Conquer: a (somewhat) general theorem

The setup: a recursive algorithm that on inputs of size $n \geq n_0 > 1$, recursively solves

- $\leq a$ smaller sub-problems,
- each of size $\leq n/b + c$,
- with a “local” running time $\leq dn^e$

where n_0, a, b, c, d, e are constants

“$T(n) \leq aT(n/b + c) + O(n^e)$”

Simplification: assume $c = 0$

General case: exercise
Recursion tree analysis

At level 1, size $\leq n/b$

At level 2, size $\leq n/b^2$

...

At level j, size $\leq n/b^j$

At level j, there are $\leq a^j$ nodes

Set $k := \lceil \log_b n \rceil$, so $n \leq b^k < bn$

No levels past level k

Let $w =$ sum of costs at levels $0, \ldots, k$

For each $j = 0 \ldots k$, sum of costs at level j is

$$\leq a^j \cdot d(n/b^j)^e = d \cdot n^e (a/b^e)^j$$
Therefore,

\[w \leq d \cdot n^e \sum_{j=0}^{k} \delta^j, \]

where \(\delta := \frac{a}{b^e} \)

Case 1: \(\delta < 1 \)

\[\sum_{j=0}^{\infty} \delta^j = \frac{1}{1 - \delta} \implies w \leq (\frac{d}{1 - \delta})n^e \]

Total running time = \(O(n^e) \)

Case 2: \(\delta = 1 \)

\[\sum_{j=0}^{k} \delta^j = (k + 1) \implies w \leq d(k + 1)n^e \]

Total running time = \(O(n^e \log n) \)
Case 3: $\delta > 1$

\[
\sum_{j=0}^{k} \delta^j = \frac{\delta^{k+1} - 1}{\delta - 1}
\]

and so for some constant C, we have

\[
w \leq Cn^e \delta^k = Cn^e a^k / (b^k)^e \leq Ca^k
\]

\[
\leq Ca^{\log_b n + 1} = Ca \cdot a^{\log_b n}
\]

\[
= Ca \cdot b^{\log_b a \cdot \log_b n}
\]

\[
= Ca \cdot n^{\log_b a}
\]

Total running time $= O(n^{\log_b a})$
Summarizing — the “Master Theorem”

Let \(f := \log_b a \)

Case 1: \(e > f \implies O(n^e) \)

Case 2: \(e = f \implies O(n^e \log n) \)

Case 3: \(e < f \implies O(n^f) \)

Example: Merge Sort: \(a = 2, b = 2, e = 1 \implies f = 1 \), Case 2, \(T(n) = O(n \log n) \)

Example: Binary Search: \(a = 1, b = 2, e = 0 \implies f = 0 \), Case 2, \(T(n) = O(\log n) \)
Application: faster multiplication

Problem: multiply two n-digit integers

An “n-digit integer” is an integer a such that $0 \leq a < R^n$, where R is the “radix” or “base”

Think of the radix R as a constant, usually a power of 2 (for example, $R = 2^{32}$ or 2^{64})

An n-digit integer can be represented using an array of n machine words
Addition of \(n \)-digit integers

The sum of two \(n \)-digit integers is an \((n + 1)\)-digit integer, and can be computed in time \(O(n) \)

\[
\text{input: } a = (a_{n-1}, \ldots, a_0), \ b = (b_{n-1}, \ldots, b_0) \\
\text{output: } c = (c_n, c_{n-1}, \ldots, c_0)
\]

\[\text{carry} \leftarrow 0\]

\[\text{for } i \text{ in } [0 \ldots n) \text{ do} \]

\[
t \leftarrow a_i + b_i + \text{carry} \quad // [0 \ldots 2R) \\
c_i \leftarrow t \mod R \\
\text{carry} \leftarrow \lfloor t/R \rfloor \quad // \{0, 1\} \\
c_n \leftarrow \text{carry} \]
Multiplication of \(n \)-digit integers

The product of two \(n \)-digit integers is a \((2n)\)-digit integer, and can be computed in time \(O(n^2) \)

input: \(a = (a_{n-1}, \ldots, a_0) \), \(b = (b_{n-1}, \ldots, b_0) \)
output: \(c = (c_{2n-1}, \ldots, c_0) \)

initialize \(c_i \leftarrow 0 \) for \(i \) in \([0..2n]\)

for \(i \) in \([0..n]\) do

\[// \ c \leftarrow c + R^i b_i \cdot a \]
\[carry \leftarrow 0 \]
for \(j \) in \([0..n]\) do

\[t \leftarrow c_{i+j} + b_i \cdot a_j + carry \quad // \ [0..R^2) \]
\[c_{i+j} \leftarrow t \mod R \]
\[carry \leftarrow \lfloor t/R \rfloor \quad // \ [0..R) \]
\[c_{i+n} \leftarrow carry \]
Karatsuba’s multiplication algorithm

Input: two \(n \)-digit integers, \(a \) and \(b \)

If \(n \) is “very small”, use the naive algorithm

Otherwise, divide each number into two pieces:

\[
a = a_{\text{hi}}R^k + a_{\text{lo}}
\]
\[
b = b_{\text{hi}}R^k + b_{\text{lo}},
\]

where \(k := \lfloor n/2 \rfloor \)

\[
\begin{array}{c|c}
| & \\
\hline
a: & a_{\text{hi}} & a_{\text{lo}} \\
\hline
b: & b_{\text{hi}} & b_{\text{lo}} \\
\end{array}
\]
\[ab = a_{hi}b_{hi}R^{2k} + (a_{hi}b_{lo} + a_{lo}b_{hi})R^k + a_{lo}b_{lo} \]
One idea:
Recursively compute the four sub-products
\[a_{hi}b_{hi}, \ a_{hi}b_{lo}, \ a_{lo}b_{hi}, \ a_{lo}b_{lo} \]
Case 3 of Master Theorem: \(e = 1, f = \log_2 4 = 2 \) \(\implies \) another \(O(n^2) \) algorithm

A better idea:
Compute \(A \leftarrow a_{hi} + a_{lo}, \ B \leftarrow b_{hi} + b_{lo} \)
Recursively compute three products:
\[H \leftarrow a_{hi}b_{hi}, \ L \leftarrow a_{lo}b_{lo}, \ F \leftarrow AB \]
Observations:
\[F = a_{hi}b_{hi} + a_{hi}b_{lo} + a_{lo}b_{hi} + a_{lo}b_{lo} \]
\[M := F - (H + L) = a_{hi}b_{lo} + a_{lo}b_{hi} \]
\[P := HR^{2k} + MR^k + L = ab \]
Case 3 of Master Theorem: \(e = 1, f = \log_2 3 \approx 1.585 \)
Running time is \(O(n^{\log_2 3}) \)
Notes:

• Karatsuba is \textit{not} the fastest method: using the Fast Fourier Transform, one can multiply two \(n\)-digit integers in time \(O(n \log n \log \log n)\)

• For 500–10,000 bit numbers, Karatsuba is the fastest

• You use it every time you buy something from amazon.com, or use ssh — it’s used to implement public-key cryptosystems