2-3 trees

Dictionary: an abstract data type

A container that maps keys to values

Dictionary operations

• Insert
• Search
• Delete

Several possible implementations

• Balanced search trees
• Hash tables
2-3 trees

A kind of balanced search tree
Assume keys are totally ordered (<, >, =)
Assume n key/value pairs are stored in the dictionary
Time per dictionary operation is $O(\log n)$
Support of other useful operations as well
Basic structure: a tree

- Key/value pairs stored only at leaves (no duplicate keys)
- All leaves at the same level, with keys in sorted order
- Each internal node:
 - has either 2 or 3 children
 - has a “guide”: the maximum key in its subtree
Example
Let $h := \text{height of tree}$ \hspace{1em} (Recall: \text{height} = \text{length of longest path from root to leaf})

Claim: $n \geq 2^h$

- Proof by induction on h
- Base case: $h = 0$, $n = 1 \checkmark$
- Induction step: $h > 0$, assume claim holds for $h - 1$
 - Tree has a root node, which has either 2 or 3 children
 - Each of these children is the root of a subtree, which itself is a 2-3 tree of height $h - 1$
 - By induction hypothesis, if the ith subtree has n_i leaves, then $n_i \geq 2^{h-1}$ [here, $i = 1 \ldots 2$ (or 3)]
 - $\therefore \quad n = \sum_i n_i \geq \sum_i 2^{h-1} \geq 2 \cdot 2^{h-1} = 2^h \checkmark$

Corollary: $h \leq \log_2 n$
Search(x): // use guides

\(p \leftarrow \text{root of tree} \)
\(h \leftarrow \text{height of tree} \)

repeat \(h \) times
 if \(x \leq p.\text{child0.guide} \) then
 \(p \leftarrow p.\text{child0} \)
 else if \(p.\text{child2} = \text{null} \) or \(x \leq p.\text{child1.guide} \) then
 \(p \leftarrow p.\text{child1} \)
 else
 \(p \leftarrow p.\text{child2} \)

// \(p \) now points to a leaf node

if \(x = p.\text{guide} \) then
 return \(p.\text{value} \)
else
 return null // or some default value
Search Invariant
Insert(x): Search for \(x \), and if it should belong under \(p \):

- add \(x \) as a child of \(p \) (if not already present)

If \(p \) now has 4 children:

- split \(p \) into two two nodes, \(p_1 \) and \(p_2 \), each with two children

- process \(p \)'s parent in the same way

- Special case: no parent — create new root, increasing height of tree by 1

Also need to update “guides” — easy

Time = \(O(\text{height}) = O(\log n) \)
Delete(x): Search for x, and if found under p:

remove x

if p now only has one child:

• if p is the root: delete p (height decreases by 1)

• if one of p’s adjacent siblings has 3 children: borrow one
• if none of p’s adjacent siblings has 3 children:
 ◦ one sibling q must have 2 children
 ◦ give p’s only child to q
 ◦ delete p
 ◦ process p’s parent
Delete 69

(give)

(borrow)

(delete root)
2-3 trees: summary

Assume n items in dictionary

Running time for lookup, insert, delete:
 $O(\log n)$ comparisons, plus $O(\log n)$ overhead

Space: $O(n)$ pointers

Note: in the literature, 2-3 trees usually store the guides in the parent node

 - every node contains two guides (the third guide is not needed)

A generalization: B-trees

 - allow many children (which makes the height smaller)
 - again, store guides in the parent node
 - useful for high-latency memory (like hard drives)
Augmenting 2-3 trees

Idea: augment nodes with additional information to support new types of queries

Example: store # of items in subtree at each internal node

Queries:
• What is the kth smallest item?
• How many items are $\leq x$?
Items may be marked with an attribute, say, “active”/“inactive”

Store a count of active items in subtree at each internal node

Queries:

• What is the kth smallest active item?
• How many active items are $\leq x$?
Attribute flipping

- Operation $\text{FlipRange}(x, y)$ flips all attribute bits of items in the range
- Assume attributes are bits
- Store an attribute bit at every node: internal nodes and leaves
 - “effective” value of the attribute is the XOR of all bits on path from root to leaf

\[
1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 1
\]
- To perform $\text{FlipRange}(x, y)$:
 - trace paths e, f to x, y
 - flip bits at x, y, and all roots of "internal" subtrees
2-3 Trees: Join and Split

\(\text{Join}(T_1, T_2) \) joins two 2-3 trees in time \(O(\log n) \)

Assume \(\max(T_1) < \min(T_2) \)

Assume \(T_i \) has height \(h_i \) for \(i = 1, 2 \)

Case 1: \(h_1 = h_2 \)

\[\text{Time: } O(1) \]
Case 2: $h_1 < h_2$

- Attach v as the left-most child of p
- If p now has 4 children, we split p, and proceed up the tree as in Insert

Time: $O(h_2 - h_1) = O(\log n)$

Case 3: $h_1 > h_2$ — similar
$\text{Split}(T, x) \iff (T_1 \leq x, T_2 > x)$

Join from inside out
We want to merge T_1, T_2, T_3, \ldots of heights h_1, h_2, h_3, \ldots

Invariant: $h_i \leq h_{i+1}$ for $i = 1, 2, \ldots,$
and at most 2 trees of any given height — except the first 3 may be of the same height

Case 1: $h_1 \leq h_2 = h_3 [< h_4]$

Then computing $T^* = \text{Join}(\text{Join}(T_1, T_2), T_3)$ takes time $O(h_2 - h_1 + 1)$, and T^* has height $h_2 + 1$

Invariant holds for T^*, T_4, T_5, \ldots

Case 2: $h_1 \leq h_2 [< h_3]$

Then computing $T^* = \text{Join}(T_1, T_2)$ takes time $O(h_2 - h_1 + 1)$, and T^* has height h_2 or $h_2 + 1$

Invariant holds for T^*, T_3, T_4, \ldots
Example:

0 0 0 1 1 3 4 4 5 6 (case 1)
1 1 1 3 4 4 5 6 (case 1)
2 3 4 4 5 6 (case 2)
3 4 4 5 6 (case 1)
5 5 6 (case 2)
6 6 (case 2)
7

The total cost is $O(t)$, where

$$t \leq (h_2 - h_1 + 1) + (h_3 - h_2 + 1) + \cdots + (h_k - h_{k-1} + 1)$$

$$= h_k - h_1 + k - 1$$

$$= O(h),$$

where h is the height of the original tree

Conclusion: total time for Split is $O(\log n)$