2-3 trees

Dictionary: an abstract data type

A container that maps *keys* to *values*

Dictionary operations

- Insert
- Search
- Delete

Several possible implementations

- Balanced search trees
- Hash tables
2-3 trees

A kind of balanced search tree

Assume keys are totally ordered (\(<, >, =\))

Assume \(n\) key/value pairs are stored in the dictionary

Time per dictionary operation is \(O(\log n)\)

Support of other useful operations as well
Basic structure: a tree

- Key/value pairs stored only at leaves (no duplicate keys)
- All leaves at the same level, with keys in sorted order
- Each internal node:
 - has either 2 or 3 children
 - has a “guide”: the maximum key in its subtree
Example
Let $h :=$ height of tree \((Recall: \text{height} = \text{length of longest path from root to leaf})\)

Claim: \(n \geq 2^h \)

- Proof by induction on \(h \)
- Base case: \(h = 0, n = 1 \checkmark \)
- Induction step: \(h > 0 \), assume claim holds for \(h - 1 \)
 - Tree has a root node, which has either 2 or 3 children
 - Each of these children is the root of a subtree, which itself is a 2-3 tree of height \(h - 1 \)
 - By induction hypothesis, if the \(i \)th subtree has \(n_i \) leaves, then \(n_i \geq 2^{h-1} \) [here, \(i = 1 \ldots 2 \) (or 3)]
 - \[n = \sum_i n_i \geq \sum_i 2^{h-1} \geq 2 \cdot 2^{h-1} = 2^h \checkmark \]

Corollary: \(h \leq \log_2 n \)
Search(x): use guides

Search(x, p, height): // Invoke as Search(x, root, h)
if (height > 0) then
 if (x ≤ p.child0.guide) then
 return Search(x, p.child0, height – 1)
 else if (x ≤ p.child1.guide or p.child2 = null) then
 return Search(x, p.child1, height – 1)
 else
 return Search(x, p.child2, height – 1)
else
 if x = p.guide then
 return p.value
 else
 return null (or a default value)
Search Invariant
Insert(x): Search for x, and if it should belong under p:

add x as a child of p (if not already present)

if p now has 4 children:

- split p into two two nodes, p₁ and p₂, each with two children

```
  p
 / \                    / \                    / \        / \        / \
w  y  z  -->  w  x  y  z  -->  w  x  y  z  -->  p₁  p₂
```

- process p’s parent in the same way
- Special case: no parent — create new root, increasing height of tree by 1

Also need to update “guides” — easy

Time = \(O(\text{height}) = O(\log n) \)
Insert 5

Insert 21

Insert 8

Insert 63

Insert 69

Insert 10
Delete(x): Search for x, and if found under p:

remove x

if p now only has one child:

- if p is the root: delete p (height decreases by 1)
- if one of p’s adjacent siblings has 3 children: borrow one

```
  q
 / \
u   v
 /   /
 w   p
 |
|    |
x
```

```
  q
 / \
u   v
 /   /
w   y
```

```
  q
 / \
 u   v
 /   /
w   y
```

• if none of p’s adjacent siblings has 3 children:
 ◦ one sibling q must have 2 children
 ◦ give p’s only child to q
 ◦ delete p
 ◦ process p’s parent
Delete 69

(give)

(borrow)

(delete root)
2-3 trees: summary

Assume \(n \) items in dictionary

Running time for lookup, insert, delete:
\[O(\log n) \] comparisons, plus \(O(\log n) \) overhead

Space: \(O(n) \) pointers

Note: in the literature, 2-3 trees usually store the guides *in the parent node*

- every node contains two guides (the guide for the third child is not needed)

A generalization: \(B \)-trees

- allow many children (which makes the height smaller)
- again, store guides in the parent node
- useful for high-latency memory (like hard drives)
Augmenting 2-3 trees

Idea: augment nodes with additional information to support new types of queries

Example: store # of items in subtree at each internal node

Queries:

• What is the kth smallest item?
• How many items are $\leq x$?
Items may be marked with an attribute, say, “active”/“inactive”

Store a count of active items in subtree at each internal node

Queries:

• What is the kth smallest active item?
• How many active items are $\leq x$?
Attribute flipping

- Operation $\text{FlipRange}(x, y)$ flips all attribute bits of items in the range
- Assume attributes are bits
- Store an attribute bit at every node: internal nodes and leaves
 - "effective" value of the attribute is the XOR of all bits on path from root to leaf

```
1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1
```
To perform $\text{FlipRange}(x, y)$:

- trace paths e, f to x, y
- flip bits at x, y, and all roots of “internal” subtrees
2-3 Trees: Join and Split

\(\text{Join}(T_1, T_2) \) joins two 2-3 trees in time \(O(\log n) \)

Assume \(\max(T_1) < \min(T_2) \)

Assume \(T_i \) has height \(h_i \) for \(i = 1, 2 \)

Case 1: \(h_1 = h_2 \)

Time: \(O(1) \)
Case 2: \(h_1 < h_2 \)

- Attach \(v \) as the left-most child of \(p \)
- If \(p \) now has 4 children, we split \(p \), and proceed up the tree as in *Insert*

Time: \(O(h_2 - h_1) = O(\log n) \)

Case 3: \(h_1 > h_2 \) — similar
Split(T, x) ⇒ (T₁ [≤ x], T₂ [> x])

join from inside out
We want to merge T_1, T_2, T_3, \ldots of heights h_1, h_2, h_3, \ldots

Invariant: $h_i \leq h_{i+1}$ for $i = 1, 2, \ldots$, and at most 2 trees of any given height — except the first 3 may be of the same height

Case 1: $h_1 \leq h_2 = h_3 [< h_4]$

Then computing $T^* = \text{Join}(\text{Join}(T_1, T_2), T_3)$ takes time $O(h_2 - h_1 + 1)$, and T^* has height $h_2 + 1$

Invariant holds for T^*, T_4, T_5, \ldots

Case 2: $h_1 \leq h_2 [< h_3]$

Then computing $T^* = \text{Join}(T_1, T_2)$ takes time $O(h_2 - h_1 + 1)$, and T^* has height h_2 or $h_2 + 1$

Invariant holds for T^*, T_3, T_4, \ldots
Example:

```
0 0 0 1 1 3 4 4 5 6  (case 1)
1 1 1 3 4 4 5 6  (case 1)
2 3 4 4 5 6  (case 2)
3 4 4 5 6  (case 1)
5 5 6  (case 2)
6 6  (case 2)
7
```

The total cost is $O(t)$, where

$$t \leq (h_2 - h_1 + 1) + (h_3 - h_2 + 1) + \cdots + (h_k - h_{k-1} + 1)$$

$$= h_k - h_1 + k - 1$$

$$= O(h),$$

where h is the height of the original tree

Conclusion: total time for Split is $O(\log n)$