CSCI-GA.1144-001
PAC II

Lecture 7: Algorithms

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Scenario 1: Amazon buying Adventure

- Early April 2011: A scientist at UC-Berkeley logged on to Amazon.com to buy an extra book for his lab.
- He usually pays $35-$40 per copy
- But on that day, he found 2 used copies, one priced at $1,730,045 the other at $2,198,177!!
- He thought it was just a mistake or a joke
- He re-checked the following day and the prices were $2,194,443 and $2,788,233!!
- The escalation continued for two weeks with the price peaking on April 18th at $28,698,655 (+ $3.99 shipping)!!
Scenario 2:
Flash Crash (one of several)

• Early on May 6, 2010: stock market was hit by unsettling developments in Greece.... BUT
• At 2:42pm (EST) markets start dropping into a free fall
• At 2:47pm (i.e. 300 seconds later): Dow Jones was down 998.5 points (the largest single day drop in history!)
• Nearly $1 Trillion of wealth fell into the electronic ether!!!
• Some share prices crashed to one penny ($0.01) rendering billion-dollar companies worthless!
• Dow Jones recovered 500 points in less than 3 minutes!!
What Happened??

- **Scenario 1:**
 - Algorithms used by Amazon to price books got into price war!
 - One of the seller’s algorithms was programmed to price the book slightly higher than the competitor’s price.
 - The second algorithm, in turn, increased its price!
 - Things didn’t turn to normal until a human being stepped in and overrode the system.

- **Scenario 2:**
 - We don’t know till today!!
 - Explanation 1: Some of the blame was directed to a city money manager whose algorithm sold $4B worth of stock too quickly.
 - Explanation 2: Group of traders who conspired to send things down all at once through a coordinated algorithms.
As we put more and more of our world under the control of algorithms, we can lose track of who – or what – is pulling the strings.

from Christopher Steiner ‘s book “Automate This: How Algorithms Came to Rule our World” (from which I got the previous two scenarios too!).
Algorithms??

A well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

A tool for solving a well-specified computational problem.

The statement of the problem specifies in general terms the desired input/output relationship.
• Problem specifications have two parts:
 1. the set of allowed input instances,
 2. the required properties of the algorithm’s output
Questions

• What is the difference between a program and an algorithm?
• Is error handling part of the algorithm? or the HLL program?
• Does your algorithm need to produce just a correct result? or always the best result?
• If computers were infinitely fast and memory was free, would you have any reasons to study algorithms?
Can We Solve Anything With a Computer?

• **Undecidable**
 – Cannot be solved by an algorithm
 – e.g. Halting problem (given a program and inputs for it, decide whether it will run forever or will eventually halt.)

• **Unsolvable**
 – No finite algorithm
 – e.g. Goldbach’s conjecture (Every even number greater than 2 can be written as the sum of two primes.)

• **Intractable**
 – Unreasonable amount of time and resources
“Steps” of an algorithm

- Finite number
- Unambiguous
- very specific
- can be carried out in a finite amount of time in a deterministic way
- Since we can only input, store, process & output data on a computer, the instructions in our algorithms will be limited to these functions
Algorithm Properties

• It must be correct.
• It must be composed of a series of concrete steps.
• There can be no ambiguity as to which step will be performed next.
• It must be composed of a finite number of steps.
• It must terminate.
Algorithm Is Different Than A HLL Program

• In algorithms you do not need to use strict syntax
• You can present an algorithm in pseudocode, flowchart, ...
• Pseudocode is not concerned with issues of software engineering (e.g. error handling, abstraction, modularity, ...).
Pseudocode Algorithm

• **Example**: Write an algorithm to determine a student’s final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.
Pseudocode Algorithm

Pseudocode:

• Input a set of 4 marks
• Calculate their average by summing and dividing by 4
• if average is below 50
 Print “FAIL”
else
 Print “PASS”
Pseudocode Algorithm

• Detailed Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1:</td>
<td>Input M_1, M_2, M_3, M_4</td>
</tr>
<tr>
<td>Step 2:</td>
<td>$\text{GRADE} \leftarrow (M_1 + M_2 + M_3 + M_4) / 4$</td>
</tr>
<tr>
<td>Step 3:</td>
<td>if $(\text{GRADE} < 50)$ then</td>
</tr>
<tr>
<td></td>
<td>Print “FAIL”</td>
</tr>
<tr>
<td></td>
<td>else</td>
</tr>
<tr>
<td></td>
<td>Print “PASS”</td>
</tr>
<tr>
<td></td>
<td>endif</td>
</tr>
</tbody>
</table>
A Flowchart

- shows logic of an algorithm
- emphasizes individual steps and their interconnections
- e.g. control flow from one action to the next
Flowchart Symbols

Basic

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Use in Flowchart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oval</td>
<td></td>
<td>Denotes the beginning or end of the program</td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td>Denotes an input operation</td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td>Denotes a process to be carried out e.g. addition, subtraction, division etc.</td>
</tr>
<tr>
<td>Diamond</td>
<td></td>
<td>Denotes a decision (or branch) to be made. The program should continue along one of two routes. (e.g. IF/THEN/ELSE)</td>
</tr>
<tr>
<td>Hybrid</td>
<td></td>
<td>Denotes an output operation</td>
</tr>
<tr>
<td>Flow line</td>
<td></td>
<td>Denotes the direction of logic flow in the program</td>
</tr>
</tbody>
</table>
Step 1: Input M1, M2, M3, M4
Step 2: GRADE ← (M1 + M2 + M3 + M4) / 4
Step 3: if (GRADE < 50) then
 Print “FAIL”
else
 Print “PASS”
endif
Example

Problem: Robot Tour Optimization

Input: A set S of n points in the plane.

Output: What is the shortest cycle tour that visits each point in the set S?
Example

NearestNeighbor(P)
 Pick and visit an initial point p_0 from P
 $p = p_0$
 $i = 0$
 While there are still unvisited points
 $i = i + 1$
 Select p_i to be the closest unvisited point to p_{i-1}
 Visit p_i
 Return to p_0 from p_{n-1}

The above algorithm is:
• Simple to understand and implement
• Makes sense
 And ... WRONG! Does not produce the shortest path!
Example

NearestNeighbor(P)
Pick and visit an initial point p_0 from P
$p = p_0$
i = 0
While there are still unvisited points
\[i = i + 1 \]
Select p_i to be the closest unvisited point to p_{i-1}
Visit p_i
Return to p_0 from p_{n-1}

This is what the above alg. produces

What can we do?

This is the optimal solution.
Example

ClosestPair(P)
 Let n be the number of points in set P.
 For $i = 1$ to $n - 1$ do
 $d = \infty$
 For each pair of endpoints (s, t) from distinct vertex chains
 if $dist(s, t) \leq d$ then $s_m = s$, $t_m = t$, and $d = dist(s, t)$
 Connect (s_m, t_m) by an edge
 Connect the two endpoints by an edge

This one will produce the optimal solution of the previous example.
Hmmm ...

• Looks like for this problem any algorithm can produce a very bad result for some inputs 😞

• This example we just saw is a classical problem called The Traveling Salesman Problem (TSP)
Traveling Salesman Problem

The traveling salesman must travel to n different towns in his area each month in order to deliver something important. Each town is a different distance away from his town and from each other town. How do you figure out a route that will minimize the distance traveled?
Brute Force?

- Enumerate all possible routes
 - For 10 towns for example there are 10! (3,628,800)
- Choose the shortest.
- This is called \textbf{brute force algorithm}.

OptimalTSP(P)

\[
d = \infty
\]

For each of the \(n! \) permutations \(P_i \) of point set \(P \)

\[
\text{If } (\text{cost}(P_i) \leq d) \text{ then } d = \text{cost}(P_i) \text{ and } P_{min} = P_i
\]

Return \(P_{min} \)
Take Home Lesson: There is a fundamental difference between algorithms, which always produce a correct result, and heuristics, which may usually do a good job but without providing any guarantee.

If we can compute a billion possible solutions per second, to solve a 30-stop TSP would require more than 8×10^{15} years, or 8 quadrillion years!
How Do We Judge Algorithms?

- Correctness
- Efficiency
 - Speed
 - Memory
- Algorithm analysis is predicting the resources that the algorithm requires
- Algorithms can be understood and studied in a language and machine-independent manner.
Machine Model → RAM

• Random Access Machine
• Instructions are executed one after the other.
• Basic instructions (arithmetic, logic, data movement) take fixed amount of time
• Memory is infinite
• We need a way that summarizes the behavior of an algorithm executed on RAM
Worst- / average- / best-case

• Worst-case running time of an algorithm
 – The longest running time for any input of size n
 – An upper bound on the running time for any input
 ⇒ guarantee that the algorithm will never take longer
 – Example: Sort a set of numbers in increasing order; and the data is in decreasing order
 – The worst case can occur fairly often
 • E.g. in searching a database for a particular piece of information

• Best-case running time
 – sort a set of numbers in increasing order; and the data is already in increasing order

• Average-case running time
 – May be difficult to define what “average” means
The Big Oh Notation

- A way of giving an approximation of the amount of computation done by an algorithm given the input size
- Ignores the difference between multiplicative constants: $f(n) = 2n$ and $g(n) = n$ are identical in Big Oh analysis
The Big Oh Notation

- \(f(n) = O(g(n)) \) means \(c \cdot g(n) \) is an upper bound on \(f(n) \). Thus there exists some constant \(c \) such that \(f(n) \) is always \(\leq c \cdot g(n) \), for large enough \(n \) (i.e., \(n \geq n_0 \) for some constant \(n_0 \)).

- \(f(n) = \Omega(g(n)) \) means \(c \cdot g(n) \) is a lower bound on \(f(n) \). Thus there exists some constant \(c \) such that \(f(n) \) is always \(\geq c \cdot g(n) \), for all \(n \geq n_0 \).

- \(f(n) = \Theta(g(n)) \) means \(c_1 \cdot g(n) \) is an upper bound on \(f(n) \) and \(c_2 \cdot g(n) \) is a lower bound on \(f(n) \), for all \(n \geq n_0 \). Thus there exist constants \(c_1 \) and \(c_2 \) such that \(f(n) \leq c_1 \cdot g(n) \) and \(f(n) \geq c_2 \cdot g(n) \).
The Big Oh Notation

Question: Is $2^{2n+1} = O(2^n)$?
Example

- \(f(n) = 2n + 5 \)
 \(g(n) = n \)
- Consider the condition
 \[2n + 5 \leq n \]
 will this condition ever hold? No!
- How about if we multiply a constant by \(n \)?
 \[2n + 5 \leq 3n \]
 the condition holds for values of \(n \) greater than or equal to 5
- This means we can select \(c = 3 \) and \(n_0 = 5 \) and \(f(n) \rightarrow O(n) \)
Example (cont’d)

2n+5 is $O(n)$
Is It Wise to Ignore Constants?

• If two algorithms one is $O(n^2)$ and the other $O(\log n)$
 – one is $C_1 n^2$ and the other $C_2 \log n$
 – What if C_2 is much bigger than C_1?

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
<th>$\log n$</th>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>0.003 μs</td>
<td>0.01 μs</td>
<td>0.033 μs</td>
<td>0.1 μs</td>
<td>1 μs</td>
<td>3.63 ms</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.004 μs</td>
<td>0.02 μs</td>
<td>0.086 μs</td>
<td>0.4 μs</td>
<td>1 ms</td>
<td>77.1 years</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0.005 μs</td>
<td>0.03 μs</td>
<td>0.147 μs</td>
<td>0.9 μs</td>
<td>1 sec</td>
<td>8.4 × 10^{15} yrs</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>0.005 μs</td>
<td>0.04 μs</td>
<td>0.213 μs</td>
<td>1.6 μs</td>
<td>18.3 min</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>0.006 μs</td>
<td>0.05 μs</td>
<td>0.282 μs</td>
<td>2.5 μs</td>
<td>13 days</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>0.007 μs</td>
<td>0.1 μs</td>
<td>0.644 μs</td>
<td>10 μs</td>
<td>1 ms</td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
<td>0.010 μs</td>
<td>1.00 μs</td>
<td>9.966 μs</td>
<td>100 ms</td>
<td>100 ms</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>0.013 μs</td>
<td>10 μs</td>
<td>130 μs</td>
<td>10 sec</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td></td>
<td>0.017 μs</td>
<td>0.10 ms</td>
<td>1.67 ms</td>
<td>16.7 min</td>
<td>16.7 min</td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td></td>
<td>0.020 μs</td>
<td>1 ms</td>
<td>19.93 ms</td>
<td>1.16 days</td>
<td>1.16 days</td>
<td></td>
</tr>
<tr>
<td>10,000,000</td>
<td></td>
<td>0.023 μs</td>
<td>0.01 sec</td>
<td>0.23 sec</td>
<td>115.7 days</td>
<td>115.7 days</td>
<td></td>
</tr>
<tr>
<td>100,000,000</td>
<td></td>
<td>0.027 μs</td>
<td>0.1 sec</td>
<td>2.66 sec</td>
<td>31.7 years</td>
<td>31.7 years</td>
<td></td>
</tr>
<tr>
<td>1,000,000,000</td>
<td></td>
<td>0.030 μs</td>
<td>1 sec</td>
<td>29.90 sec</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Big Oh examples

- \(N^2 / 2 - 3N = O(N^2) \)
- \(1 + 4N = O(N) \)
- \(7N^2 + 10N + 3 = O(N^2) = O(N^3) \)
- \(\log_{10} N = \log_2 N / \log_2 10 = O(\log_2 N) = O(\log N) \)
- \(\sin N = O(1); \ 10 = O(1), \ 10^{10} = O(1) \)
- \(\log N + N = O(N) \)
- \(N = O(2^N), \text{ but } 2^N \text{ is not } O(N) \)
Example

- Calculate \[\sum_{i=1}^{N} i^3 \]

```c
int sum(int n)
{
    int partialSum;

    partialSum=0;
    for (int i=1;i<=n;i++)
        partialSum += i*i*i;
    return partialSum;
}
```

- Lines 1 and 4 count for one unit each
- Line 3: executed N times, each time four units
- Line 2: (1 for initialization, N+1 for all the tests, N for all the increments) total 2N + 2
- total cost: 6N + 4 ⇒ O(N)
Sorting

• **Input**: sequence of n numbers

 \[<a_1, a_2, \ldots, a_n>\]

• **Output**: a permutation of the input sequence \[<b_1, b_2, \ldots, b_n>\] such that:

 \[b_1 \leq b_2 \leq \ldots \leq b_n\]
Insertion Sort

- Adding a new element to a sorted list will keep the list sorted if the element is inserted in the correct place

- A single element list is sorted

- Inserting a second element in the proper place keeps the list sorted

- This is repeated until all the elements have been inserted into the sorted part of the list
Insertion Sort

INSERTION-SORT (A)
1 for j = 2 to length[A]
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1...j-1]
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i+1] = A[i]
7 i = i - 1
8 A[i+1] = key

Source: “Introduction to Algorithms” 3rd Edition
Algorithm Analysis

• In general, the time taken by an algorithm grows with the size of the input.
• So, it is traditional to describe the running time of a program as a function of the size of its input.
• The running time of an algorithm on a particular input is the number of primitive operations executed.
• We care about the worst-case scenario.
Important note before we start

When a `for` or `while` loop exits in the usual way (i.e., due to the test in the loop header), the test is executed one time more than the loop body.
Analyzing Insertion Sort

INSERTION-SORT (A)

1. for j = 2 to `length[A]`
2. \(\text{key} = A[j] \)
3. // Insert \(A[j] \) into the sorted sequence \(A[1...j-1] \)
4. \(i = j - 1 \)
5. while \(i > 0 \) and \(A[i] > \text{key} \)
7. \(i = i - 1 \)
8. \(A[i+1] = \text{key} \)

\(t_j \) is the number of times the while loop test in step 5 is executed for that value of \(j \).

Source: “Introduction to Algorithms” 3rd Edition
Analyzing Insertion Sort

Best case:
A is sorted
t_j = 1 in step 5 for all j

Worst case:
A is reverse sorted
t_j = j

\[T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n - 1). \]

\[T(n) = an + b \]

\[T(n) = \frac{c_1 n}{2} + \frac{c_2 (n-1)}{2} + \frac{c_4 (n-1)}{2} + c_5 \left(\frac{n(n+1)}{2} - 1 \right) + \frac{c_6 (n(n-1))}{2} + c_7 \left(\frac{n(n-1)}{2} \right) + c_8 (n-1) \]

\[= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} \right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8 \right) n - \left(c_2 + c_4 + c_5 + c_8 \right). \]

\[T(n) = an^2 + bn + n \]

Source: “Introduction to Algorithms” 3rd Edition
How to Design An Algorithm

• Incremental approach: similar to insertion sort

• Divide-and-conquer approach:
 – Divide: break the problem into subproblems similar to the original problem but smaller in size
 – Conquer: solve the subproblems recursively
 – Combine: combine the solutions to create the solution of the original problem
Merge Sort

Sorts the elements of subarray $A[p..r]$.
Initially: $p = 1$ and $r = \text{length}[A]$

```
MERGE-SORT(A, p, r)
1   if $p < r$
2       $q = \lfloor (p + r)/2 \rfloor$
3       MERGE-SORT(A, p, q)
4       MERGE-SORT(A, q + 1, r)
5       MERGE(A, p, q, r)
```
Merge Sort

Merge(A, p, q, r)

1. $n_1 = q - p + 1$
2. $n_2 = r - q$
3. let $L[1..n_1 + 1]$ and $R[1..n_2 + 1]$ be new arrays
4. **for** $i = 1$ **to** n_1
 5. $L[i] = A[p + i - 1]$
6. **for** $j = 1$ **to** n_2
8. $L[n_1 + 1] = \infty$
9. $R[n_2 + 1] = \infty$
10. $i = 1$
11. $j = 1$
12. **for** $k = p$ **to** r
 13. if $L[i] \leq R[j]$
 15. $i = i + 1$
 16. else $A[k] = R[j]$
 17. $j = j + 1$

Source: “Introduction to Algorithms” 3rd Edition
Execution Example

• Partition

```
7 2 9 4
3 8 6 1
```

```
1 2 3 4 6 7 8 9
```
Execution Example (cont.)

- Recursive call, partition
Execution Example (cont.)

• Recursive call, partition

```
7 2 9 4 3 8 6 1
7 2 9 4
7 2
7

7 2 9 4
3 8 6 1
1 3 8 6
1

1 2 3 4 6 7 8 9
```
Execution Example (cont.)

• Recursive call, base case

7 2 9 4 | 3 8 6 1

7 2 9 4

7 2 9 4

7 7 2 2 9 9 4 4

7 7 2 2 9 9 4 4

7 7 2 2 9 9 4 4

7 7 2 2 9 9 4 4

7 7 2 2 9 9 4 4
Execution Example (cont.)

- Recursive call, base case

```
7 2 9 4
5 8 6 1
```

7 2 9 4
5 8 6 1

- Recursive call, base case

```
7 2
5 8
```

7 2
5 8

- Recursive call, base case

```
7
5
```

7
5
Execution Example (cont.)

• Merge

```
  7 2 9 4 | 3 8 6 1
  7 2 | 9 4
  7 2 | 9 4
  7 2 | 2 7
  7 2 | 2 7
  7 2 | 2 7
```

```
  7 2 9 4 | 3 8 6 1
  7 2 | 9 4
  7 2 | 9 4
  7 2 | 2 7
  7 2 | 2 7
  7 2 | 2 7
```
Execution Example (cont.)

- Recursive call, ..., base case, merge
Execution Example (cont.)

• Merge

```
7 2 9 4 | 3 8 6 1
```

7 2 | 9 4 → 2 4 7 9

7 2 | 2 7
7 → 7
2 → 2

9 4 | 4 9
9 → 9
4 → 4

1 3 8 6 7 2 9 4 | 3 8 6 1

7
2
9
4

1
3
8
6
1
7
Execution Example (cont.)

• Recursive call, ..., merge, merge
Execution Example (cont.)

- Merge
Analyzing Merge Sort

\[T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \]

- Calculate the middle of the array
- Recursively solve 2 subproblems each of size \(n/2 \)
- Combine the elements
Analyzing Merge Sort

- \(T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \)

 \[T(n) = D(n) + 2T(n/2) + C(n) \]

 \[= c + 2T(n/2) + cn \]
Analyzing Merge Sort

- \(T(n) = \text{divide work} + \text{conquer work} + \text{combine work} \)
 \[T(n) = D(n) + 2T(n/2) + C(n) \]
 \[T(n) = c + 2T(n/2) + cn \]

Source: “Introduction to Algorithms” 3rd Edition

\(\Theta(n \lg n) \)

\(T(n) = cn \lg n + cn \)

Total for conquer: \(cn \lg n \)
Bubble Sort

• If we compare pairs of adjacent elements and none are out of order, the list is sorted

• If any are out of order, we must swap them to get an ordered list

• Bubble sort will make passes though the list swapping any adjacent elements that are out of order
Bubble Sort

• After the first pass, we know that the largest element must be in the correct place

• After the second pass, we know that the second largest element must be in the correct place

• Because of this, we can shorten each successive pass of the comparison loop
Bubble Sort Algorithm

numberOfPairs = N
swappedElements = true
while (swappedElements) do
 numberOfPairs = numberOfPairs - 1
 swappedElements = false
 for i = 1 to numberOfPairs do
 if (A[i] > A[i + 1]) then
 Swap(A[i], A[i + 1])
 swappedElements = true
 end if
 end for
end while
Best-Case Analysis

• If the elements start in sorted order, the for loop will compare the adjacent pairs but not make any changes

• So the `swappedElements` variable will still be false and the while loop is only done once

• There are \(N - 1 \) comparisons in the best case
Worst-Case Analysis

- In the worst case the while loop must be done as many times as possible. This happens when the data set is in the reverse order.

- Each pass of the for loop must make at least one swap of the elements

- The number of comparisons will be:

\[W(N) = \sum_{i=1}^{N-1} (N - i) = \sum_{k=N-1}^{1} k = \sum_{i=1}^{N-1} i = \frac{(N - 1) \times N}{2} = O(N^2) \]
Quicksort Algorithm

- Another divide-and-conquer algorithm
- Quicksort is usually $O(n \log n)$ but in the worst case slows to $O(n^2)$

Given an array of n elements (e.g., integers):
- If array only contains one element, return
- Else
 - pick one element to use as pivot.
 - Partition elements into two sub-arrays:
 - Elements less than or equal to pivot
 - Elements greater than pivot
 - Quicksort two sub-arrays
 - Return results
Quicksort

• **Divide step:**
 – Pick any element (**pivot**) \(v \) in \(S \)
 – Partition \(S - \{v\} \) into two disjoint groups
 \[S_1 = \{x \in S - \{v\} \mid x < v\} \]
 \[S_2 = \{x \in S - \{v\} \mid x \geq v\} \]

• **Conquer step:** recursively sort \(S_1 \) and \(S_2 \)

• **Combine step:** the sorted \(S_1 \) (by the time returned from recursion), followed by \(v \), followed by the sorted \(S_2 \) (i.e., nothing extra needs to be done)
Example
quicksort small

0 13 26 31 43 57

quicksort large

0 13 26 31 43 57 65 75 81 92
Pseudo-code

QUICKSORT(A, p, r)
1 if $p < r$
2 \hspace{1em} $q = \text{PARTITION}(A, p, r)$
3 \hspace{1em} QUICKSORT($A, p, q - 1$)
4 \hspace{1em} QUICKSORT($A, q + 1, r$)

PARTITION(A, p, r)
1 $x = A[r]$
2 $i = p - 1$
3 \hspace{1em} for $j = p$ to $r - 1$
4 \hspace{2em} if $A[j] \leq x$
5 \hspace{3em} $i = i + 1$
6 \hspace{1em} exchange $A[i]$ with $A[j]$
7 exchange $A[i + 1]$ with $A[r]$
8 return $i + 1$
More Sorting Algorithms

- Shell sort
- Heap sort
- Radix sort
- Counting sort
- Bucket sort
- ...
Now that we have a sorted array, what is the most efficient way to search an element in it?
Binary Search

- Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

- Ex. Binary search for 33.
Binary Search

<table>
<thead>
<tr>
<th>6</th>
<th>13</th>
<th>14</th>
<th>25</th>
<th>33</th>
<th>43</th>
<th>51</th>
<th>53</th>
<th>64</th>
<th>72</th>
<th>84</th>
<th>93</th>
<th>95</th>
<th>96</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

\[\text{lo} \quad \rightarrow \quad \text{mid} \quad \rightarrow \quad \text{hi} \]
Binary Search
Binary Search
Binary Search
Binary Search
Binary Search
Binary Search
Efficiency of binary search

• If \(n \) represents the number of names, the maximum number of searches \(x \) necessary to find a name is the smallest integer that satisfies the inequality \(2^x > n \).

\[
2^x > n \\
\log (2^x) > \log n \\
x \log 2 > \log n
\]

The maximum number of searches is the smallest integer greater than \(\frac{\log n}{\log 2} \).
Efficiency of binary search

<table>
<thead>
<tr>
<th># of elements</th>
<th>Maximum sequential searches necessary</th>
<th>Maximum binary searches necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>10</td>
</tr>
<tr>
<td>5,000</td>
<td>5,000</td>
<td>13</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>14</td>
</tr>
<tr>
<td>50,000</td>
<td>50,000</td>
<td>16</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
<td>17</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,000,000</td>
<td>20</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10,000,000</td>
<td>24</td>
</tr>
</tbody>
</table>

With the incredible speed of today’s computers, a binary search becomes necessary only when the number of elements is large.
Don’t you think that binary search is related to trees?
Tree Example:
Linux File Structure
Another Tree Example: Compiler Parse Tree

Parse tree for:
\[x = 1 \]
\[y = 2 \]
\[3 \times (x + y) \]
So ... What is a tree?

A tree is a finite set of one or more nodes such that:
- There is a specially designated node called the root.
- The remaining nodes are partitioned into \(n \geq 0 \) disjoint sets \(T_1, \ldots, T_n \), where each of these sets is a tree.
- We call \(T_1, \ldots, T_n \) the subtrees of the root.
Some Definitions

- The **degree of a node** is the number of subtrees of the node.
- The node with **degree 0** is a leaf or terminal node.
- A node that has subtrees is the **parent** of the roots of the subtrees.
- The roots of these subtrees are the **children** of the node.
- Children of the same parent are **siblings**.
- The **ancestors** of a node are all the nodes along the path from the root to the node.
- The **level or depth** of a node n is the length of the unique path from the root to n.
A Tree Node

• Every tree node:
 – object - useful information
 – children - pointers to its children nodes
Left Child - Right Sibling
Example: Tree Implementation

```c
struct tnode {
    int key;
    struct tnode* lchild;
    struct tnode* sibling;
};
```

Example of operations:
- Create a tree with three nodes (one root & two children)
- Insert a new node (in tree with root R, as a new child at level L)
- Delete a node (in tree with root R, the first child at level L)
Binary Trees

- A special class of trees: max degree for each node is 2
- Recursive definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree.
Example: Is this a binary tree?
Example of Binary Trees

Skewed Binary Tree

Complete Binary Tree
Maximum Number of Nodes in BT

- The maximum number of nodes on level i of a binary tree is 2^{i-1}, $i \geq 1$ (assuming root is at level 1).
- The maximum number of nodes in a binary tree of depth k is 2^{k-1}, $k \geq 1$.
Full BT vs. Complete BT

• A full binary tree of depth k is a binary tree of depth k having $2^k - 1$ nodes, $k \geq 0$ (root is at depth 1)
• A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

![Complete binary tree](image1)

![Full binary tree of depth 4](image2)
Binary Tree Representations: Array

- If a complete binary tree with n nodes is represented sequentially, then for any node with index i, $1 \leq i \leq n$, we have:
 - parent(i) is at $i/2$ if $i!=1$. If $i=1$, i is at the root and has no parent.
 - leftChild(i) is at $2i$ if $2i \leq n$. If $2i>n$, then i has no left child.
 - rightChild(i) is at $2i+1$ if $2i +1 \leq n$. If $2i +1 >n$, then i has no right child.
Array presentation (aka Sequential presentation)

(1) waste space
(2) insertion/deletion problem
Tree Presentation: Linked Representation

typedef struct tnode *ptnode;
typedef struct tnode {
 int data;
 ptnode left, right;
};
Binary Tree Traversals

- There are six possible combinations of traversal
 - lRr, lrR, Rlr, Rrl, rRl, rlR
- Adopt convention that we traverse left before right, only 3 traversals remain:
 - lRr, lrR, Rlr
 - inorder, postorder, preorder
Example: Arithmetic Expression Using BT

inorder traversal
A / B * C * D + E
infix expression
preorder traversal
+ * * / A B C D E
prefix expression
postorder traversal
A B / C * D * E +
postfix expression
void inorder(ptnode ptr)
/* inorder tree traversal */
{
 if (ptr) {
 inorder(ptr->left);
 printf("%d", ptr->data);
 inorder(ptr->right);
 }
}
Preorder Traversal (recursive version)

```c
void preorder(ptnode ptr)
/* preorder tree traversal */
{
    if (ptr) {
        printf("%d", ptr->data);
        preorder(ptr->left);
        preorder(ptr->right);
    }
}
```

+ * * / A B C D E
Postorder Traversal (recursive version)

```c
void postorder(ptnode ptr)
/* postorder tree traversal */
{
    if (ptr) {
        postorder(ptr->left);
        postdorder(ptr->right);
        printf("%d", ptr->data);
    }
}

A B / C * D * E +
```
Euler Tour Traversal

• generic traversal of a binary tree
• the preorder, inorder, and postorder traversals are special cases of the Euler tour traversal
• “walk around” the tree
Good Book
Good Book
Automate This: How Algorithms Came to Rule Our World

Christopher Steiner

Good Book: For Fun!
Conclusions

• We defined what an algorithm is in simple terms.
• Big Oh notation is a convenient way to compare algorithms
• Sometimes the best solution may not be needed and a good-enough solution is just fine.
• Heuristics are the way to go if we cannot get the exact/best results with reasonable resources.
• You already know stack and queues ... Now you know trees!