CSCI-GA.1144-001

PAC II

Lecture 1: Bits, Data, and Operations

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Who Am I?

• Mohamed Zahran (aka Z)
• Computer architecture/OS/Compilers Interaction
• http://www.mzahran.com
• Office hours: Tue 2:00-4:00 pm
• Room: WWH 320
Main Goals of This Course

• What happens under the hood in computer systems
• How are software and hardware related
• From algorithms to circuits

You will be able to write programs in C and understand what’s going on underneath.
My wish list for this Course

• To build strong background in computer science
• To use what you have learned in MANY different contexts
• To see how all the pieces of the puzzle fit together and how they affect each other
• To enjoy the course!
Grading

• Homework : 15%
• Project : 25%
• Midterm Exam : 20%
• Final Exam : 40%
So...What is a computer?

“The Computer is only a fast idiot, it has no imagination; it cannot originate action. It is, and will remain, only a tool to human beings.”
American Library Association’s reaction to UNIVAC computer Exhibit at the 1964 New York World’s fair.

A computer is a symbol-processing machine

Computer: electronic genius?
• NO! Electronic idiot!
• Does exactly what we tell it to, nothing more.
It all starts with a “problem”
Automating Algorithm Execution

• Algorithm *development*
 – A detailed know-how
 – *Granularity* depends on the machine
 – Done with human brain power

• Algorithm *execution*
 – Sequencing
 – Execution
Two Side Effects

- Algorithm must handle different set of inputs
- Algorithm must be presented to the machine in a *formal* way
Hardware and Software
Regarding Software

Two type of developers

Performance Group
(C/C++, CUDA, OpenCL,)

Productivity Group
(Python, Scala, ...)
From Theory to Practice

• In theory, computer can compute anything that’s possible to compute
 – given enough memory and time

• In practice, solving problems involves computing under constraints.
 – time
 • weather forecast, next frame of animation, ...
 – cost
 • cell phone, tablets, ...
 – power
 • cell phone, electricity bill of bit supercomputers, ...
Can We Solve Anything With a Computer?

- **Undecidable**
 - Cannot be solved by an algorithm
 - e.g. Halting problem (given a program and inputs for it, decide whether it will run forever or will eventually halt.)

- **Unsolvable**
 - No finite algorithm
 - e.g. Goldbach’s conjecture (Every even number greater than 2 can be written as the sum of two primes.)

- **Intractable**
 - Unreasonable amount of time and resources
Hierarchical View of a Computer System

- A computer system is complicated
- In order to facilitate its study and analysis, it is advisable to divide it into levels
How do we Understand computers?

• Need to understand *abstractions* such:
 - Algorithms
 - Applications software
 - Systems software
 - Assembly Language
 - Machine Language (ISA)
 - Microarchitecture
 - Logic design
 - Device level
 - Semiconductors/Silicon used to build transistors
 - Properties of atoms, electrons, and quantum dynamics
Two Recurring Themes

• Abstraction
 – Productivity enhancer – don’t need to worry about details...
 You can drive a car without knowing how the internal combustion engine works.
 – ...until something goes wrong!
 Where’s the dipstick? What’s a spark plug?
 – Important to understand the components and how they work together.

• Hardware vs. Software
 – It’s not either/or – both are components of a computer system.
 – Even if you specialize in one, you should understand capabilities and limitations of both.
High Level Language

Assembly Language

Machine Language

Microarchitecture

Logic Level

Problem → Algorithm Development → Programmer

Compiler (translator)

Assembler (translator)

Control Unit (Interpreter)

Microsequencer (Interpreter)

Device Level → Semiconductors → Quantum
Problem Definition Level

• Taking a complex real-life problem and formulating it so as to be solved by a computer (abstraction/modeling)
• Requires simplification (which details to remove?)
• Using mathematical model, graph theory, etc.
Algorithm Level

- Precise step-by-step procedure
- Steps must be well defined, to be executed by a machine (no ambiguity)
- Algorithm development is a creative process
- Finite number of steps
- Pseudocode or flowchart
High-Level Language Level

- e.g. C/C++/C#, Java, Fortran, Lisp, etc.
- Used by application programmers and systems programmers
- Can we build machines that can execute HLL right away?
- Compiler’s job is not only translating
Assembly Language Level

- More primitive instructions than HLL
- English version of the machine language
 + some more
- User mode and kernel mode
- Can we go from this level to HLL?
ISA (Instruction Set Architecture) level

• A very important abstraction
 – interface between hardware and low-level software
 – advantage: different implementations of the same architecture
 – disadvantage: sometimes prevents using new innovations

• Modern instruction set architectures:
 – x86_64, PowerPC, MIPS, ARM, and others
Instructions

• Language of the Machine
• Platform-specific
• A limited set of machine language commands "understood" by hardware (e.g. ADD, LOAD, STORE, RET)
• We’ll study MIPS instruction set architecture and x86 instruction set architecture
From HLL to ISA: an Example
Microarchitecture Level

• Resources and techniques used to implement the ISA
 – Intel i7 implements the x86 ISA
 – IBM Power 9 implements the Power PC ISA
• Register files, ALU, Fetch unit, etc.
• Realize intended cost/performance goals
• Interpretation done by the control unit
Logic-Design Level

• Gates
• Multiplexers, decoders, PLA, etc.
• Synchronous (i.e. clocked): the most widely used
• Asynchronous
Device Level

- Transistors and wires
- Implement the digital logic gates
- Lower level:
 - Solid state physics
 - Machine looks more analog than digital at that level!
Many Choices at Each Level

Solve a system of equations

- Red-black SOR
- Gaussian elimination
- Jacobi iteration
- Multigrid

- FORTRAN
- C
- C++
- Java

- PowerPC
- Intel x86
- Atmel AVR

- Centrino
- Pentium 4
- Xeon

- Ripple-carry adder
- Carry-lookahead adder

- CMOS
- Bipolar
- GaAs

Tradeoffs:
cost
performance
power
(etc.)
Our First Steps...
How do we represent data in a computer?

• How do we represent information using electrical signals?
• At the lowest level, a computer is an electronic machine.
• Easy to recognize two conditions:
 – presence of a voltage - we call this state “1”
 – absence of a voltage - we call this state “0”
Binary Representations

0.0V
0.5V
2.8V
3.3V
0.0V

0
1
0
A Computer is a Binary Digital Machine

• Basic unit of information is the binary digit, or bit.
• Values with more than two states require multiple bits.
 – A collection of two bits has four possible states: 00, 01, 10, 11
 – A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
 – A collection of n bits has 2^n possible states.
What kinds of data do we need to represent?

- **Numbers** - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- **Text** - characters, strings, ...
- **Images** - pixels, colors, shapes, ...
- **Sound**
- **Logical** - true, false
- **Instructions**
- ...

• **Data type:**
 - *representation* and *operations* within the computer
Unsigned Integers

• **Option 1: Non-positional notation**
 - could represent a number (“5”) with a string of ones (“11111”)
 - problems?

• **Option 2: Weighted positional notation**
 - like decimal numbers: “329”
 - “3” is worth 300, because of its position, while “9” is only worth 9

329

\[
3 \times 10^2 + 2 \times 10^1 + 9 \times 10^0 = 329
\]

101

\[
1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5
\]

This is the one used in computers
Unsigned Integers (cont.)

- An \(n \)-bit unsigned integer represents \(2^n \) values: from 0 to \(2^n - 1 \).

<table>
<thead>
<tr>
<th></th>
<th>(2^2)</th>
<th>(2^1)</th>
<th>(2^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Unsigned Binary Arithmetic

- Base-2 addition – just like base-10!

 - add from right to left, propagating carry

\[
\begin{array}{c}
10010 \\
+ 1001 \\
\hline
11011
\end{array}
\quad \begin{array}{c}
10010 \\
+ 1011 \\
\hline
11101
\end{array}
\quad \begin{array}{c}
1111 \\
+ 1 \\
\hline
10000
\end{array}
\]

\[
\begin{array}{c}
10111 \\
+ 111 \\
\hline
110000
\end{array}
\]
How About Negative Numbers

<table>
<thead>
<tr>
<th>Sign Magnitude:</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?
Signed Integers

- With n bits, we have 2^n distinct values.
 - assign about half to positive integers and about half to negative

- Positive integers
 - just like unsigned - zero in most significant (MS) bit
 \[\text{00101} = 5 \]

- Negative integers
 - sign-magnitude - set MS bit to show negative, other bits are the same as unsigned
 \[\text{10101} = -5 \]
 - one's complement - flip every bit to represent negative
 \[\text{11010} = -5 \]
 - in either case, MS bit indicates sign: 0=positive, 1=negative
Two’s Complement

- Problems with sign-magnitude and 1’s complement
 - two representations of zero (+0 and –0)
 - arithmetic circuits are complex
 - How to add two sign-magnitude numbers?
 - e.g., try 2 + (-3)
 - How to add one’s complement numbers?
 - e.g., try 4 + (-3)
- Two’s complement representation developed to make circuits easy for arithmetic.
 - for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with “normal” addition, ignoring carry out

\[
\begin{array}{c}
00101 \quad (5) \\
+ 11011 \quad (-5) \\
\hline
00000 \quad (0)
\end{array}
\quad
\begin{array}{c}
01001 \quad (9) \\
+ 10111 \quad (-9) \\
\hline
00000 \quad (0)
\end{array}
\]
Two’s Complement Signed Integers

- MS bit is sign bit.
- Range of an n-bit number: \(-2^{n-1}\) through \(2^{n-1} - 1\).
 - The most negative number \((-2^{n-1})\) has no positive counterpart.

Two’s complement is the presentation used by almost all machines to present negative numbers.
Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s complement to get a positive number.
2. Add powers of 2 that have “1” in the corresponding bit positions.
3. If original number was negative, add a minus sign.

<table>
<thead>
<tr>
<th>n</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Examples

\[X = 00100111_{\text{two}} \]
\[= 2^5 + 2^2 + 2^1 + 2^0 = 32 + 4 + 2 + 1 \]
\[= 39_{\text{ten}} \]

\[X = 11100110_{\text{two}} \]
\[-X = 00011010 \]
\[= 2^4 + 2^3 + 2^1 = 16 + 8 + 2 \]
\[= 26_{\text{ten}} \]
\[X = -26_{\text{ten}} \]

Assuming 8-bit 2’s complement numbers.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Converting Decimal to Binary (2’s C)

- **First Method: Division**

1. Find magnitude of decimal number. (Always positive.)
2. Divide by two – remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a zero as the MS bit; if original number was negative, take two’s complement.

<table>
<thead>
<tr>
<th>X = 104_{ten}</th>
<th>104/2 = 52 r0</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52/2 = 26 r0</td>
<td>bit 1</td>
</tr>
<tr>
<td></td>
<td>26/2 = 13 r0</td>
<td>bit 2</td>
</tr>
<tr>
<td></td>
<td>13/2 = 6 r1</td>
<td>bit 3</td>
</tr>
<tr>
<td></td>
<td>6/2 = 3 r0</td>
<td>bit 4</td>
</tr>
<tr>
<td></td>
<td>3/2 = 1 r1</td>
<td>bit 5</td>
</tr>
<tr>
<td>X = 01101000_{two}</td>
<td>1/2 = 0 r1</td>
<td>bit 6</td>
</tr>
</tbody>
</table>
Converting Decimal to Binary (2's C)

• Second Method: *Subtract Powers of Two*
 1. Find magnitude of decimal number.
 2. Subtract largest power of two less than or equal to number.
 3. Put a one in the corresponding bit position.
 4. Keep subtracting until result is zero.
 5. Append a zero as MS bit. If original was negative, take two’s complement.

\[
\begin{array}{c|c}
 n & 2^n \\
\hline
 0 & 1 \\
 1 & 2 \\
 2 & 4 \\
 3 & 8 \\
 4 & 16 \\
 5 & 32 \\
 6 & 64 \\
 7 & 128 \\
 8 & 256 \\
 9 & 512 \\
 10 & 1024 \\
\end{array}
\]

\[X = 104_{\text{ten}}\]

\[
\begin{align*}
104 - 64 &= 40 & \text{bit 6} \\
40 - 32 &= 8 & \text{bit 5} \\
8 - 8 &= 0 & \text{bit 3}
\end{align*}
\]

\[X = 01101000_{\text{two}}\]
Operations: Arithmetic and Logical

• We now have a good representation for signed integers, so let’s look at some arithmetic operations:
 – Addition
 – Subtraction
 – Sign Extension
• We’ll also look at overflow conditions for addition.
• Multiplication, division, etc., can be built from these basic operations.
• Logical operations are also useful:
 – AND
 – OR
 – NOT
Addition

- Addition is just binary addition.
 - Assume all integers have the same number of bits.
 - Ignore carry out.
 - For now, assume that sum fits in n-bit 2's comp. representation.

\[
\begin{align*}
01101000 & \quad (104) \\
+ & \quad 11110110 \quad (-10) \\
\hline
01011000 & \quad (98)
\end{align*}
\]

\[
\begin{align*}
& \quad \text{---------} \quad \text{---------} \\
+ & \quad 11110000 \quad (-16) \\
\hline
01011000 & \quad (98) \quad \text{---------} \quad (-9) \\
\hline
\end{align*}
\]

Subtraction

• Negate subtrahend (2nd no.) and add.
 – assume all integers have the same number of bits
 – ignore carry out
 – for now, assume that difference fits in n-bit 2’s comp. representation

\[
\begin{array}{cc}
01101000 \quad (104) & 11110110 \quad (-10) \\
-00010000 \quad (16) & - \\
01101000 \quad (104) & 11110110 \quad (-10) \\
+11110000 \quad (-16) & + \\
01011000 \quad (88) & \\
\end{array}
\]
Sign Extension

• To add two numbers, we must represent them with the same number of bits.
• If we just pad with zeroes on the left:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>00000100 (still 4)</td>
</tr>
<tr>
<td>1100</td>
<td>00001100 (12, not -4)</td>
</tr>
</tbody>
</table>

• Instead, replicate the MS bit -- the sign bit:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>00000100 (still 4)</td>
</tr>
<tr>
<td>1100</td>
<td>11111100 (still -4)</td>
</tr>
</tbody>
</table>
Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
Logical Operations

- Operations on logical TRUE or FALSE
 - two states -- takes one bit to represent: TRUE=1, FALSE=0

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A AND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A OR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>NOT A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- View n-bit number as a collection of n logical values
 - operation applied to each bit independently
Examples of Logical Operations

• **AND**
 – useful for clearing bits
 • AND with zero = 0
 • AND with one = no change

 \[
 \begin{array}{c}
 11000101 \\
 \text{AND} \\
 00001111 \\
 \hline
 00000101
 \end{array}
 \]

• **OR**
 – useful for setting bits
 • OR with zero = no change
 • OR with one = 1

 \[
 \begin{array}{c}
 11000101 \\
 \text{OR} \\
 00001111 \\
 \hline
 11001111
 \end{array}
 \]

• **NOT**
 – unary operation -- one argument
 – flips every bit

 \[
 \begin{array}{c}
 11000101 \\
 \text{NOT} \\
 00111010
 \end{array}
 \]
Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.

- fewer digits -- four bits per hex digit
- less error prone -- easy to corrupt long string of 1's and 0's

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>
Converting from Binary to Hexadecimal

• Every four bits is a hex digit.
 – start grouping from right-hand side

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & & & & & \\
\end{array}
\]

\[
\begin{array}{cccccc}
3 & A & 8 & F & 4 & D \\
7 & & & & & \\
\end{array}
\]

This is not a new machine representation, just a convenient way to write the number.
How about Fractions? Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book:

Numerical Computing with IEEE Floating Point Arithmetic
Turing Award 1989 to William Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)
Fractions: Fixed-Point

• How can we represent fractions?
 – Use a “binary point” to separate positive from negative powers of two -- just like “decimal point.”
 – 2’s comp addition and subtraction still work.
 • if binary points are aligned

\[
\begin{align*}
00101000.101 & \quad (40.625) \\
+ \quad 11111110.110 & \quad (-1.25) \\
\hline
00100111.011 & \quad (39.375)
\end{align*}
\]
Fractional Binary Numbers

$\sum_{k=-j}^{i} b_k \times 2^k$
How does the machine store floating points?

• We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576×10^9

• IEEE Standard 754
 - Supported by all major CPUs
 - Standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 • Numerical analysts predominated over hardware designers in defining standard
IEEE floating Point Standard

Single Precision:

\[(-1)^{\text{sign}} \times (1+\text{significand}) \times 2^{\text{exponent} - 127} \]

The variables shown in red are the numbers stored in the machine

Important! Significant is always 0.XXXX
IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit (called hidden 1 technique, except when exp = -127)

• Exponent is “biased” to make sorting easier
 - all 0s is smallest exponent
 - all 1s is largest exponent
 - bias of 127 for single precision and 1023 for double precision
 - summary: \((-1)^{\text{sign}} \times (1+\text{significand}) \times 2^{\text{exponent} - \text{bias}}\)

• Example:
 - decimal: \(-.75 = - (\frac{1}{2} + \frac{1}{4})\)
 - binary: \(-.11 = -1.1 \times 2^{-1}\)
 - floating point: exponent = 126 = 01111110
 - IEEE single precision: 10111111010000000000000000000000
Floating Point Example

what is the decimal equivalent of

1 01110110 10110000...0
Precisions

- **Single precision:** 32 bits

 \[
 \text{s exp frac} \\
 1 \quad 8\text{-bits} \quad 23\text{-bits}
 \]

- **Double precision:** 64 bits

 \[
 \text{s exp frac} \\
 1 \quad 11\text{-bits} \quad 52\text{-bits}
 \]

- **Extended precision:** 80 bits (Intel only)

 \[
 \text{s exp frac} \\
 1 \quad 15\text{-bits} \quad 63 \text{ or } 64\text{-bits}
 \]
Based on \(\text{exp} \)
we have 3 encoding schemes

- \(\text{exp} \neq 0..0 \) or \(11...1 \) \(\rightarrow \) normalized encoding
- \(\text{exp} = 0...000 \) \(\rightarrow \) denormalized encoding
- \(\text{exp} = 1111...1 \) \(\rightarrow \) special value encoding
 - \(\text{frac} = 000...0 \)
 - \(\text{frac} = \) something else
1. Normalized Encoding

- **Condition**: \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)

 referred to as Bias

- **Exponent is**: \(E = \text{Exp} - (2^{k-1} - 1) \), \(k \) is the \# of exponent bits
 - Single precision: \(E = \text{exp} - 127 \)
 - Double precision: \(E = \text{exp} - 1023 \)

- **Significand is**: \(M = 1.xxx\ldots x_2 \)
 - Range(M) = \([1.0, 2.0-\varepsilon)\)
 - Get extra leading bit for free
Normalized Encoding Example

• Value: Float $F = 15213.0$;
 $15213_{10} = 11101101101101_2$
 $= 1.1101101101101_2 \times 2^{13}$

• Significand
 $M = \underbrace{1.1101101101101}_{\text{frac}}$

• Exponent
 $E = \exp - \text{Bias} = \exp - 127 = 13$
 $\Rightarrow \exp = 140 = 10001100_2$

• Result:
 $0 \, 10001100 \, 11011011011010100000000000$
2. Denormalized Encoding
(called subnormal in revised standard 854)

- **Condition**: \(\text{exp} = 000...0 \)

- **Exponent value**: \(E = 1 - \text{Bias} \) (instead of \(E = 0 - \text{Bias} \))
- **Significand is**: \(M = 0.xxx...x _2 \) (instead of \(M=1.xxx_2 \))

- **Cases**
 - \(\text{exp} = 000...0, \frac{}{} \neq 000...0 \)
 - Represents zero
 - Note distinct values: +0 and -0
 - \(\text{exp} = 000...0, \frac{}{} \neq 000...0 \)
 - Numbers very close to 0.0
3. Special Values Encoding

- **Condition**: \(\text{exp} = 111...1 \)

- **Case**: \(\text{exp} = 111...1, \text{frac} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -\infty \)

- **Case**: \(\text{exp} = 111...1, \text{frac} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
PresentingText:
ASCII Characters

- **ASCII**: Maps 128 characters to 7-bit code.
 - both printable and non-printable (ESC, DEL, ...) characters

<table>
<thead>
<tr>
<th>ASCII Code</th>
<th>Character</th>
<th>ASCII Code</th>
<th>Character</th>
<th>ASCII Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td><code>nul</code></td>
<td>20</td>
<td><code>sp</code></td>
<td>30</td>
<td><code>0</code></td>
</tr>
<tr>
<td>01</td>
<td><code>soh</code></td>
<td>11</td>
<td><code>dc1</code></td>
<td>21</td>
<td><code>!</code></td>
</tr>
<tr>
<td>02</td>
<td><code>stx</code></td>
<td>12</td>
<td><code>dc2</code></td>
<td>22</td>
<td><code>"</code></td>
</tr>
<tr>
<td>03</td>
<td><code>etx</code></td>
<td>13</td>
<td><code>dc3</code></td>
<td>23</td>
<td><code>#</code></td>
</tr>
<tr>
<td>04</td>
<td><code>eot</code></td>
<td>14</td>
<td><code>dc4</code></td>
<td>24</td>
<td><code>$</code></td>
</tr>
<tr>
<td>05</td>
<td><code>enq</code></td>
<td>15</td>
<td><code>nak</code></td>
<td>25</td>
<td><code>%</code></td>
</tr>
<tr>
<td>06</td>
<td><code>ack</code></td>
<td>16</td>
<td><code>syn</code></td>
<td>26</td>
<td><code>&</code></td>
</tr>
<tr>
<td>07</td>
<td><code>bel</code></td>
<td>17</td>
<td><code>etb</code></td>
<td>27</td>
<td><code>'</code></td>
</tr>
<tr>
<td>08</td>
<td><code>bs</code></td>
<td>18</td>
<td><code>can</code></td>
<td>28</td>
<td><code>(</code></td>
</tr>
<tr>
<td>09</td>
<td><code>ht</code></td>
<td>19</td>
<td><code>em</code></td>
<td>29</td>
<td><code>)</code></td>
</tr>
<tr>
<td>0a</td>
<td><code>nl</code></td>
<td>1a</td>
<td><code>sub</code></td>
<td>2a</td>
<td><code>*</code></td>
</tr>
<tr>
<td>0b</td>
<td><code>vt</code></td>
<td>1b</td>
<td><code>esc</code></td>
<td>2b</td>
<td><code>+</code></td>
</tr>
<tr>
<td>0c</td>
<td><code>np</code></td>
<td>1c</td>
<td><code>fs</code></td>
<td>2c</td>
<td><code>,</code></td>
</tr>
<tr>
<td>0d</td>
<td><code>cr</code></td>
<td>1d</td>
<td><code>gs</code></td>
<td>2d</td>
<td><code>-</code></td>
</tr>
<tr>
<td>0e</td>
<td><code>so</code></td>
<td>1e</td>
<td><code>rs</code></td>
<td>2e</td>
<td><code>.</code></td>
</tr>
<tr>
<td>0f</td>
<td><code>si</code></td>
<td>1f</td>
<td><code>us</code></td>
<td>2f</td>
<td><code>/</code></td>
</tr>
</tbody>
</table>
Interesting Properties of ASCII Code

• What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?

• What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?

• Given two ASCII characters, how do we tell which comes first in alphabetical order?
Conclusions

• In this lecture we made our first steps toward understanding bits, data, and operations on them.
• Computers understand only binary
• Binary presentation is enough to deal with many different type of data (signed/unsigned numbers, floating points, ASCII, ...)