

CSCI-GA.2130-001 Compiler Construction Lecture 9: Intermediate-Code Generation I

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu

Back-end and Front-end of A Compiler

Back-end and Front-end of A Compiler

m x n compilers can be built by writing just m front ends and n back ends

Back-end and Front-end of A Compiler

while-, for-, or switch statements).

	PRODUCTION	SEMANTIC RULES
1)	$E \rightarrow E_1 + T$	$E.node = new Node('+', E_1.node, T.node)$
2)	$E \rightarrow E_1 - T$	$E.node = new Node('-', E_1.node, T.node)$
3)	$E \to T$	E.node = T.node
4)	$T \rightarrow (\ E \)$	T.node = E.node
5)	$T \to \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}. entry)$
6)	$T \rightarrow \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}.val)$

a + a * (b - c) + (b - c) * d

	PRODUCTION	SEMANTIC RULES
1)	$E \rightarrow E_1 + T$	$E.node = new Node('+', E_1.node, T.node)$
2)	$E \rightarrow E_1 - T$	$E.node = new Node('-', E_1.node, T.node)$
3)	$E \to T$	E.node = T.node
4)	$T \rightarrow (\ E \)$	T.node = E.node
5)	$T \rightarrow \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}. entry)$
6)	$T \rightarrow \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}.val)$

T -> E1 * T T.node = new Node('*'. E1.node, T.node)

a + a * (b - c) + (b - c) * d

	PRODUCTION	SEMANTIC RULES
1)	$E \rightarrow E_1 + T$	$E.node = new Node('+', E_1.node, T.node)$
2)	$E \rightarrow E_1 - T$	$E.node = new Node('-', E_1.node, T.node)$
3)	$E \to T$	E.node = T.node
4)	$T \rightarrow (\ E \)$	T.node = E.node
5)	$T \rightarrow \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}. entry)$
6)	$T \rightarrow \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}.val)$

T -> E1 * T T.node = new Node('*'. E1.node, T.node)

$$a + a * (b - c) + (b - c) * d$$

Directed Acyclic Graph (DAG):

- More compact representation
- Gives clues regarding generation of efficient code

Example

Construct the DAG for:

((x+y) - ((x+y)*(x-y))) + ((x+y)*(x-y))

How to Generate DAG from Syntax-Directed Definition?

T	-> E1 * T	T.node = new Node('*'. E1.node, T.nod
6)	$T \rightarrow \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}.val)$
5)	$T \rightarrow \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}. entry)$
4)	$T \rightarrow (\ E \)$	T.node = E.node
3)	$E \rightarrow T$	E.node = T.node
2)	$E \rightarrow E_1 - T$	$E.node = \mathbf{new} \ Node('-', E_1.node, T.node)$
1)	$E \rightarrow E_1 + T$	$E.node = \mathbf{new} \ Node('+', E_1.node, T.node)$
	PRODUCTION	SEMANTIC RULES

All what is needed is that functions such as **Node** and **Leaf** above check whether a node already exists. If such a node exists, a pointer is returned to that node.

How to Generate DAG from Syntax-Directed Definition?

	T -> E1 * T	T.node = new Node('*'. E1.node,
6)	$T \rightarrow \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}.val)$
5)	$T \to \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}. entry)$
4)	$T \rightarrow (\ E \)$	T.node = E.node
3)	$E \rightarrow T$	E.node = T.node
2)	$E \rightarrow E_1 - T$	$E.node = \mathbf{new} \ Node('-', E_1.node, T.node)$
1)	$E \to E_1 + T$	$E.node = new Node('+', E_1.node, T.node)$
	PRODUCTION	SEMANTIC RULES

1) $p_1 = Leaf(\mathbf{id}, entry-a)$

2)
$$p_2 = Leaf(\mathbf{id}, entry-a) = p_1$$

3)
$$p_3 = Leaf(id, entry-b)$$

4)
$$p_4 = Leaf(id, entry-c)$$

5)
$$p_5 = Node('-', p_3, p_4)$$

b)
$$p_6 = Node(*, p_1, p_5)$$

(i)
$$p_7 = Noae(+, p_1, p_6)$$

8)
$$p_8 = Leaf(\mathbf{1d}, entry-b) = p_3$$

9)
$$p_9 = Leaf(id, entry-c) = p_4$$

10)
$$p_{10} = Node('-', p_3, p_4) = p_5$$

11)
$$p_{11} = Leaf(\mathbf{id}, entry-d)$$

12)
$$p_{12} = Node('*', p_5, p_{11})$$

13)
$$p_{13} = Node('+', p_7, p_{12})$$

a + a * (b - c) + (b - c) * d

Data Structure: Array

Data Structure: Array

Scanning the array each time a new node is needed, is not an efficient thing to do.

Data Structure: Hash Table

Hash function = h(op, L, R)

Three-Address Code

- Another option for intermediate presentation
- Built from two concepts:
 addresses and instructions
- At most one operator

t_1	=	b - c
t_2	=	$a * t_1$
t_3	Ħ	$a + t_2$
t_4	=	$t_1 * d$
t_5	=	$t_3 + t_4$

Address

Can be one of the following:

- A name: source program name
- A constant
- Compiler-generated temporary

Instructions

Assignment instructions of the form $x = y$ op z	
Assignments of the form $x = op y$	
Copy instructions of the form $x = y$	
An unconditional jump goto L	
Conditional jumps of the form if x goto L and ifFalse x got	o L
Conditional jumps such as if x relop y goto L	
Procedure call such as p(x1, x2,, xn) is implemented as:	param x_1 param x_2 param x_n call p, n

Indexed copy instructions of the form x = y[i] and $x[i] = y_i$

Address and pointer assignments of the form x = & y, x = *y, and *x = y

Choice of Operator Set

- Rich enough to implement the operations of the source language
- Close enough to machine instructions to simplify code generation

Data Structure

How to present these instructions in a data structure?

- Quadruples
- Triples
- Indirect triples

Data Structure: Quadruples

- Has four fields: op, arg1, arg2, result
- Exceptions:
 - Unary operators: no arg2
 - Operators like *param*: no arg2, no result
 - (Un)conditional jumps: target label is the result

			op	arg_1	arg_2	result
t_1	=	minus c 0	minus	с		t1
t_2	5	b * t ₁ 1	*	Ъ	t_1	t_2
t_3	=	minus c 2	minus	c	1	t_3
t_4	=	b * t ₃ 3	*	b	t_3	t_4
t_5	=	t ₂ + t ₄ 4	+	t_2	t_4	t_5
a	=	t ₅ 5	=	t_5		a
				•		

Data Structure: Triples

- Only three fields: no *result* field
- Results referred to by its position

Representation of **a** = **b** * -**c** + **b** * -**c**

Data Structure: Indirect Triples

- When instructions are moving around during optimizations: quadruples are better than triples.
- Indirect triples solve this problem

Optimizing complier can reorder instruction list, instead of affecting the triples themselves

Single-Static-Assignment (SSA)

- Is an intermediate presentation
- Facilitates certain code optimizations
- All assignments are to variables with distinct names

p = a + b	$\mathbf{p}_1 = \mathbf{a} + \mathbf{b}$
q = p - c	$\mathbf{q}_1 = \mathbf{p}_1 - \mathbf{c}$
p = q * d	$\mathbf{p}_2 = \mathbf{q}_1 * \mathbf{d}$
p = e - p	$\mathbf{p}_3 = \mathbf{e} - \mathbf{p}_2$
q = p + q	$\mathbf{q}_2 = \mathbf{p}_3 + \mathbf{q}_1$

(a) Three-address code. (b) Static single-assignment form.

Single-Static-Assignment (SSA)

Example:

```
if ( flag ) x = -1; else x = 1;
y = x * a;
```

If we use different names for X in true part and false part, then which name shall we use in the assignment of y = x * a?

The answer is: Ø-function

```
if ( flag ) x<sub>1</sub> = −1; else x<sub>2</sub> = 1;
x<sub>3</sub> = φ(x<sub>1</sub>, x<sub>2</sub>);
Returns the value of its argument that corresponds to the control-flow
path that was taken to get to the assignment statement containing the
```

Ø-function

Example

Translate the arithmetic expression a + -(b + c) into:

- a) A syntax tree.
- b) Quadruples.
- c) Triples.
- d) Indirect triples.

Types and Declarations

- Type checking: to ensure that type of operands matches the type expected by operator
- Determine the storage needed
- Calculate the address of an array reference
- Insert explicit type conversion
- Choose the right version of an operator

Storage Layout

- From the type, we can determine amount of storage at run time.
- At compile time, we will use this amount to assign its name a relative address.
- Type and relative address are saved in the symbol table entry of the name.
- Data with length determined only at run time saves a pointer in the symbol table.

Storage Layout

- Multibyte objects are stored in consecutive bytes and given the address of the first byte
- Storage for aggregates (e.g. arrays and classes) is allocated in one contiguous block of bytes.

$$B \rightarrow \text{int} \{ B.type = integer; B.width = 4; \}$$

 $B \rightarrow$ float { B.type = float; B.width = 8; }

$$C \rightarrow \epsilon$$
 { $C.type = t; C.width = w;$ }

$$C \rightarrow [\mathbf{num}] C_1 \{ array(\mathbf{num}.value, C_1.type); \\ C.width = \mathbf{num}.value \times C_1.width; \}$$

Create a symbol table entry

Translations of Statements and Expressions

Syntax-Directed Definition (SDD)

Syntax-Directed Translation (SDT)

PRODUCTION	SEMANTIC RULES
$S \rightarrow \mathbf{id} = E$;	S.code = E.code gen(top.get(id.lexeme) '=' E.addr)
$E \rightarrow E_1 + E_2$	$\begin{vmatrix} E.addr = \mathbf{new} \ Temp() \\ E.code = E_1.code \mid\mid E_2.code \mid\mid \\ gen(E.addr'=' E_1.addr'+' E_2.addr) \end{vmatrix}$
- <i>E</i> ₁	$E.addr = \mathbf{new} \ Temp()$ $E.code = E_1.code $ $gen(E.addr'=' '\mathbf{minus'} \ E_1.addr)$
(<i>E</i> ₁)	$E.addr = E_1.addr$ $E.code = E_1.code$
id	E.addr = top.get(id.lexeme) $E.code = ''$

PRODUCTION	SEMANTIC RULES	a = b + - c
$S \rightarrow \operatorname{id} = E$;	$S.code = E.code \parallel$	a = b + -c
	gen(top.get(id.lexeme) '=' E.addr)	
$E \rightarrow E_1 + E_2$	E.addr = new Temp() $E.code = E_1.code E_2.code $ $gen(E.addr'='E_1.addr'+'E_2.addr)$	
<i>- E</i> ₁	$E.addr = \mathbf{new} Temp()$ $E.code = E_{1}.code \mid $ $gen(E.addr'=' '\mathbf{minus'} E_{1}.addr)$	$t_1 = minus c$
\mid (E_1)	$E.addr = E_1.addr$ $E.code = E_1.code$	$t_2 = b + t_1$ a = t ₂
id	E.addr = top.get(id.lexeme) $E.code = ''$	-

PRODUCTION	SEMANTIC RULES
$S \rightarrow \operatorname{id} = E$;	$S.code = E.code \mid\mid$
	gen(top.get(id.lexeme) '=' E.addr)
$E \rightarrow E_1 + E_2$	$E.addr = \mathbf{new} \ Temp()$
	$E.code = E_1.code \mid\mid E_2.code \mid\mid \\gen(E.addr '=' E_1.addr '+' E_2.addr)$
$-E_1$	$E.addr = \mathbf{new} \ Temp()$
	$E.code = E_1.code gen(E.addr'=' 'minus' E_1.addr)$
(<i>E</i> ₁)	$E.addr = E_1.addr$
	$E.code = E_1.code$
id	E.addr = top.get(id.lexeme)
	E.code =

Generating three-address code incrementally to avoid long strings manipulations

 $S \rightarrow id = E ; \{ gen(top.get(id.lexeme) '=' E.addr); \}$ $E \rightarrow E_1 + E_2 \{ E.addr = new Temp(); \\ gen(E.addr '=' E_1.addr '+' E_2.addr); \}$ $\mid -E_1 \{ E.addr = new Temp(); \\ gen(E.addr '=' 'minus' E_1.addr); \}$ $\mid (E_1) \{ E.addr = E_1.addr; \}$ $\mid id \{ E.addr = top.get(id.lexeme); \}$

gen() does two things:

generate three address instruction
append it to the sequence of instructions generated so far

Arrays

- Elements of the same type
- Stored consecutively in memory
- In languages like C or Java elements are: 0, 1, ..., n-1
- In some other languages: low, low+1, ..., high

Arrays

If elements start with 0, and element width is w, then a[i] address is: $base + i \times w$ base is address of A[0]

Generalizing to two-dimensions a[i1][i2]: w1 is width of a row and w2 the width of an element or $base + i_1 \times w_1 + i_2 \times w_2$

w is width of an element, n2 is number of elements per row $base + (i_1 \times n_2 + i_2) \times w$

Generalizing to k-dimensions: $base + i_1 \times w_1 + i_2 \times w_2 + \cdots + i_k \times w_k$

or

 $base + ((\cdots (i_1 \times n_2 + i_2) \times n_3 + i_3) \cdots) \times n_k + i_k) \times w$

$$S \rightarrow id = E ; \{ gen(top.get(id.lexeme) '=' E.addr); \}$$

$$\mid L = E ; \{ gen(L.addr.base '[' L.addr ']' '=' E.addr); \}$$

$$E \rightarrow E_1 + E_2 \{ E.addr = new Temp(); \\ gen(E.addr '=' E_1.addr '+' E_2.addr); \}$$

$$\mid id \{ E.addr = top.get(id.lexeme); \}$$

$$\mid L \{ E.addr = new Temp(); \\ gen(E.addr '=' L.array.base '[' L.addr ']'); \}$$

$$L \rightarrow id [E] \{ L.array = top.get(id.lexeme); \\ L.type = L.array.type.elem; \\ L.addr = new Temp(); \\ gen(L.addr '=' E.addr '*' L.type.width); \}$$

$$\mid L_1 [E] \{ L.array = L_1.array; \qquad pointer to symbol table entry \\ L.type = L_1.type.elem; \\ t = new Temp(); \\ L.addr = new Temp(); \\ L.a$$

 $gen(t '=' E.addr '*' L.type.width); \}$ $gen(L.addr '=' L_1.addr '+' t); \}$

Annotated parse tree for c+a[i][j]

A is a 2x3 array of integers

$$t_1 = i * 12$$

 $t_2 = j * 4$
 $t_3 = t_1 + t_2$
 $t_4 = a [t_3]$
 $t_5 = c + t_4$

- Skim: 6.3.1, 6.3.2
- Read: Beginning of chapter 6 -> 6.4