d—i-‘ NEW YORK UNIVERSITY

CSCI-GA.2130-001
Compiler Construction

Lecture 11:
Run-Time Environment

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu

What Are We Talking About
Here?

« How do your code and data look like
during execution?

 Interaction among compiler, OS, and
target machine

* The main two themes:
— Allocation of storage locations
— Access to variables and data

Compiler-writer Perspective

Logic Address

Space of the
Executing
Program

Physical Address
Space

Source Code to Execution

C source

Assembly

"4

Object File

R

Library

DLL

Executable

Typical Memory Subdivision

Code

Static

Heap

Free Memory

Stack

Stack Allocation

 For managing procedure calls

« Stack grows with each call and shrinks
with each procedure return/terminate

* Each procedure call pushes an activation
record into the stack

int a[11]; _
void readArray() { /* Reads 9 integers into a[l],...,a[9]. */

int i; enter main()
) enter readArray()
int partition(int m, int n) { leave readArray()
/* Picks a separator value v, and partitions a[m ..n] so that enter quicksort(1,9)
afrn ..p — 1] are less than v, a[p] = v, and alp + 1..n| are enter partition(l ,9)
| equal to or greater than v. Returns p. */ leave partition(1 ,9)
} enter quicksort(1,3)
void quicksort(int m, int n) { o
int 1; leave quicksort(1,3)
if (2. > :;;riition(m s enter quicksort(5,9)
quicksort(m, i-1); '
quicksort (i+1, n); leave quicksort(5,9)
) ¥ leave quicksort(1,9)
main() { leave main()
readArray();
al0] = -9999;
al10] = 99qa:
quicksort
¥ . .
/ \ activation tree
p(1,9 /q ll 3)\ /q(si, 9)
p(1,3) q(1,0) q(2,3) p(5,9) ¢(5,5) q(7,9)

p(2,3) q(2,1) ¢(3.3) p(7,9) q(7.7) ¢(9,9)

Activation Tree

Models procedure activations
The main is the root

Children of the same parent are
executed in sequence from left to right

Sequence of procedure calls -> preorder
traversal of activation tree

Sequence of procedure returns ->
postorder traversal of activation tree

Activation Records

» What is pushed into the stack for each
procedure activation

 Contents vary with the language being
implemented

General Activation Record

Actual parameters

e

Temporaries

integer a[11]

main main

(a) Frame for main

integer a[l11]

main main
vy integer m, n.
' integer i

(c) r has been popped and ¢(1,9) pushed

main

/

r

integer a[11

main

(b) r is activated

main
rd

4
7’

r q(1,9)

7’
4

p(1,9) q(1,3

’ |
’

p(1,3) q(1,0)

integer a[ll

main

. - - — - — - -

integer 1

mtqger m, n

fr - - - - e

integer 1

(d) Control returns to g(1,3)

Code Generation

* Calling sequence
— Code that allocates activation record
— Code for entering information in it

* Return sequence
— Code to restore the state of the machine

Parameters and returned value

Temporaries and local data

Parameters and returned value

- = — — = = = o e e Em S e = e o omm omm omm o

Control link

Links and saved status

top_sp —*

Temporaries and local data

Caller’s
responsibility

Callee’s
responsibility

i

Caller’s
activation
record

Callee’s
activation
record

Heap Management

* Heap: portion of the store used for
data that lives indefinitely

* Memory manager: subsystem
responsible for (de)allocation of space
within the heap

» Garbage collection: process of finding
spaces within the heap that are no
longer used and reallocate them to
other data items

Memory Manager

Keeps track of all the free space in heap
at all time

Allocation

— Interaction with OS

Deallocation
Desired properties:

— Space efficiency: minimize total heap space
needed by programs

— Program efficiency: making good use of
memory subsystem

— Low overhead: of (de)allocation processes

Typical Sizes Typical Access Times

> 2GB l Virtual Memory (Disk) J 3-15 ms
256MB - 2GB Physical Memory 100 - 150 ns
128KDB - 4MB 2nd-Level Cache 40 - 60 ns
16 - 64KB 1st-Level Cache 5 - 10 ns
. R
Y
32 Words Registers (Processor) 1 ns

Heap Fragmentation

* Due to allocation/delallocation
« Why is it bad?
 How to deal with it?

— Best fit

— First fit

— Next fit

— Worst fit

Garbage Collection

* Garbage: data that cannot be
referenced

» Garbage collection: reclamation of
garbage from heap

Assumptions

* Objects have a type that can be
determined by garbage collector at run-

time.

» References to objects are always to the
address of the beginning of the object.

Performance Metrics

Overall execution time: garbage
collection can be very slow

Space usage: must avoid fragmentation
Maximum pause time must be minimized
Program locality

Reference-Counting
Garbage Collection

» Every object must have a field for
reference count

* This field counts the number of
references to the object

 If count reaches zero, the object is
deleted

So

« Skim:7.3,75.2,7.6,7.7, and 7.8
* Read: the rest of chp 7

