
CSCI-GA.2130-001

Compiler Construction

Lecture 11:
Run-Time Environment

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

What Are We Talking About
Here?

• How do your code and data look like
during execution?

• Interaction among compiler, OS, and
target machine

• The main two themes:
– Allocation of storage locations

– Access to variables and data

Logic Address
Space of the

Executing
Program

Physical Address
Space

OS

Compiler-writer Perspective

DLL
DLL

Loader

Source Code to Execution

Assembly
Assembler Object File

Object File
Object File

Assembly
Assembly

Executable

Linker
Library
Library
Library

Assembly
Assembly

C source
Compiler

DLL

Typical Memory Subdivision

Stack Allocation

• For managing procedure calls

• Stack grows with each call and shrinks
with each procedure return/terminate

• Each procedure call pushes an activation
record into the stack

activation tree

Activation Tree

• Models procedure activations

• The main is the root

• Children of the same parent are
executed in sequence from left to right

• Sequence of procedure calls -> preorder
traversal of activation tree

• Sequence of procedure returns ->
postorder traversal of activation tree

Activation Records

• What is pushed into the stack for each
procedure activation

• Contents vary with the language being
implemented

General Activation Record

Code Generation

• Calling sequence
– Code that allocates activation record

– Code for entering information in it

• Return sequence
– Code to restore the state of the machine

Heap Management

• Heap: portion of the store used for
data that lives indefinitely

• Memory manager: subsystem
responsible for (de)allocation of space
within the heap

• Garbage collection: process of finding
spaces within the heap that are no
longer used and reallocate them to
other data items

Memory Manager

• Keeps track of all the free space in heap
at all time

• Allocation
– Interaction with OS

• Deallocation
• Desired properties:

– Space efficiency: minimize total heap space
needed by programs

– Program efficiency: making good use of
memory subsystem

– Low overhead: of (de)allocation processes

Heap Fragmentation

• Due to allocation/delallocation

• Why is it bad?

• How to deal with it?
– Best fit

– First fit

– Next fit

– Worst fit

Garbage Collection

• Garbage: data that cannot be
referenced

• Garbage collection: reclamation of
garbage from heap

Assumptions

• Objects have a type that can be
determined by garbage collector at run-
time.

• References to objects are always to the
address of the beginning of the object.

Performance Metrics

• Overall execution time: garbage
collection can be very slow

• Space usage: must avoid fragmentation

• Maximum pause time must be minimized

• Program locality

Reference-Counting
Garbage Collection

• Every object must have a field for
reference count

• This field counts the number of
references to the object

• If count reaches zero, the object is
deleted

So

• Skim: 7.3, 7.5.2, 7.6, 7.7, and 7.8

• Read: the rest of chp 7

