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Lecture 6: Probabilistic phylogenetic trees.



Associated reading.
•Ch. 8 BSA

•MAIN:
Large punctual contribution of speciation to
evolutionary divergence. Science 314:2006, p.
119

•Optional:
Branch and bound algorithms to determine
minimal evolutionary trees. Hendy + Penny.
Mathamatical Biosciences 59:277-290(1982)



Making trees from pairwise distances
1: AGCTTC-TA
2: ACGTTCTTA
3: AGCTTATTA
4: TCCTATTTA
5: TCCTTATTA

Where distance is number of
mismatches
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Neighbor joining:  We still assume additivity, we still
use a deterministic joining
algorithm, but we redefine distance
and the algorithms slightly to better
deal with variable branch lengths.

We calc a distance D, where d is
corrected by mean path to other
nodes, r. (where L is number of
leaves)

Algorithm:
0. leaf nodes -> L, we’ll grow tree

from this set, L
1. Pick argminij(Dij) and make node k

joining i and j
2. Calc distance from k to all other

nodes
3. Add k to growing tree
4. Remove i and j from node list (now

they are represented by k
5. Rinse, lather, repeat.
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parsimony
Evaluate cost of tree: Given tree +
Given alignment.

1: AGTCTACGGATTAT
2: AGTTTACGGATTAT
3: TGTTTACGGATTAT
4: AGTGTACGGATTAA
5: TGTGTACGGATTAA

1. Set Sk(a) = 0 for a = x, infinity
otherwise for leaf nodes.

2. If not at leaf node (internal vertex):
   Sk(a) = minb(Si(b) + S(a,b))+
           minb(Sj(b) + S(a,b))

Here S(a,b) = 0 for match,
                     1 for missmatch



P(tree|data)
Evaluate cost of tree: Given tree +
Given alignment. With variable
branch lengths. We aim to maximize
P(tree|Data)

1: AGTCTACGGATTAT
2: AGTTTACGGATTAT
3: TGTTTACGGATTAT

We want to calc:
P(x•|T,t•)

Where :
x• = sequences
T = the tree topology
t• = the branch lengths

How do we calc:
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S(t)
Positional independence:

1: AGTCTACGGATTAT
2: AGTTTACGGATTAT
3: TGTTTACGGATTAT

Product over positions to calc
P(x|y,t):

Multiplicative with respect to time:

P(x | y,t) = P(xi | yi ,t)
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S(t) … rates

We need to defign a substitution
matrix that is time dependant.

We define expected rates as matrix R
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All substitutions equal

Transitions and Transversions at different rates



S(t)

For small t
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S(t)

As t->∞, rt = st= 0.25Solving for s(t)
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S(t)

Solving for s(t)
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Two sequences

The P(x|T,t) is root invariant
for two gene case.P(xu
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Two sequences

The P(x|T,t) is root invariant
for two gene case. If we carry the 
product over all sequence positions 
and make n1 = number of matches 
and n2 = number of mismatches. 

We show P as a function of t1+t2 
(alpha = 0.01) for various values of 
n1 and n2. 
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n sequences

Given T and t. 
α(i) is immediate ancestor to node
i. 
X’s represent sequence positions

a’s represent sequence possibilities at 
internal nodes.  

The sum is over all possible assignments
of a at each non-leaf node… this could
mean a big computation per evaluation
of each T,t over X …
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n sequences
Felsenstein’s Algorithm [1981]
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k = 2n !1

recursion(P(Lk | a)) :
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Finding most
probable trees

For small trees numerically solve for
maximum likelihood tree

Or, maximum likelihood algorithm
proposed by Felsenstein.

Conjugate gradient.



Finding most
probable trees

For small trees numerically solve for
maximum likelihood tree

Or, maximum likelihood algorithm
proposed by Felsenstein.

Conjugate gradient.

We can also use Monte Carlo to
sample from
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If P2 ≤ P1 accept move
If P2 > P1 accept move
   with P ~ P2/P1

Moves are defined by a so-called
proposal distribution. Possible
moves to change one tree into
another:

1. Change node height
2. Reordering leaves / branch

switching

o Still a very difficult search.



Parsimony and
Felsenstein
algorithm

We can relate the weighted
parsimony algorithm to the ML
algorithm of Felesnstein.

Score from parsimony can be
related to P:

We see that parsimony uses:

While maximum likelihood
algorithm uses:

Thus we can think of the weighted
parsimony algorithm as a Viterbi
approximation of the of the ML
result with fixed branch length
given the tree.

Problems:

No branch length optimization, so
several cases where parsimony
does quite poorly.

S(a,b) = ! logP(b | a)

min(S(b) + S(a,b)) ! max(P(b)P(b | a))

P(b)P(b | a)
b

!



Neighbor joining
-> Maximum
Likelihood

…If prob model is correct.

Prob methods/models let us:
-assess tree
-generate ensembles of plausible trees
-use priors

Neighbor joining could be used to
generate plausible starting trees
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With multiplicative and reversible P’s for 
substitutions we can show neighbor joining 
correctly reconstructs tree:



Next week’s reading
•Ch. 9 BSA : Preparing for

RNA structure prediction
•Berezikov, Cuppen & Plasterk.

Approaches to microRNA
discovery. NATURE GENETICS
SUPPLEMENT. S2 VOLUME 38.JUNE
2006


