Homework 7: Programming assignment

Due May 1, 2003

We want to compute the trajectory of a comet. In nondimensionalized variables, the equations of motion are given by the inverse square law:

\[
\frac{d^2}{dt^2} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{-1}{(x^2 + y^2)^{3/2}} \begin{pmatrix} x \\ y \end{pmatrix}.
\]

We will always suppose that the comet starts at \(t = 0 \) with \(x = 10, y = 0, \dot{x} = 0, \) and \(\dot{y} = v_0 \). If \(v_0 \) is not too large, the comet will move in an elliptical orbit, returning to \(x = 10, y = 0 \) after a time \(T(v_0) \). This is the time for a single orbit. The shape of the ellipse depends on \(v_0 \), as you will see in your numerical experiments.

1. Compute the position and velocity at time \(t = 30 \) with \(v_0 = .2 \) using a fixed \(\Delta t \) and the three methods: Forward Euler, second order Adams Bashforth, and four stage fourth order Runge Kutta. Do a convergence study to verify the expected order of accuracy of each of these methods.

2. Use a fixed time step to compute \(T(v_0) \) as a function of \(v_0 \) for \(v_0 \) in the range \([.01, .5]\). Take enough points in the range to plot the results nicely. For this, you will need some way to pick an appropriate time step, possibly by doing a convergence study. You also need to decide on a definition of \(T \) that does not require \(x(T) = 10 \). Because the numerical solution is not exact, the computed trajectory will not exactly come back to its original position even though the solution to the ordinary differential equation does. You should also safeguard your program against the possibility that \(T(v_0) \) is infinite\(^1\). Make a few plots of complete orbits for various values of \(v_0 \) to see what the possible shapes are.

Remember to include in the materials you hand in a discussion of how your tested your program, and the robustness measures you included.

\[^1\text{This is not a drill - it occurs somewhere in this range.}\]