Properties

- An *assertion* is a statement about a global state, e.g., at most one process is accessing the printer.
- An assertion is *invariant* if it holds in *every* global state of *every* run.
- Proving that an assertion is invariant usually requires *induction* on the number of rounds.
Environment

- Processes can receive *inputs* and generate *outputs*, but who supplies them?
- add the environment process *env*
- *env* can be used also generate *failure patterns*

We say that one system *simulates* another if, using the same *env*, the two systems produce the same outputs (at the same rounds.) Simulation relations are also usually proven by induction on the number of rounds.
Complexity Measures

- **Time complexity**: measures in terms of the number of rounds it takes until all outputs are produced OR until all processes halt. If the system allows variable *wake-up* times, time is measured from the round of the first *wakeup*.

- **Communication Complexity** measures either in terms of the number of messages sent until all outputs are produced (or all processes halt), or in number of total bits sent.
Processes *do not know* their ids. They each have a variable *status*. A *solution* to the problem is a protocol for the processes such that eventually one, and only one, process has (and outputs) *status*=leader.
Versions and Impossibility

- All non-leaders eventually output non-leader;
- The number n is known/unknown;
- The ring is uni/bi-directional;
- Processes are identical or have unique ids
Versions and Impossibility

- All non-leaders eventually output non-leader;
- The number n is known/unknown;
- The ring is uni/bi-directional;
- Processes are identical or have unique ids

Theorem: If the ring is bidirectional and all processes are identical, there is no deterministic solution to leader election

\implies no solution for unidirectional rings
Possible and Impossible

- All non-leaders eventually output non-leader;
- The number n is known/unknown;
- The ring is uni/bi-directional;
- Processes are identical or have unique ids

Theorem: If the ring is bidirectional and all processes are identical, there is no deterministic solution to leader election

\implies no solution for unidirectional rings

\implies: A solution must **break the symmetry**, by process ids or randomization

Restrict to non-randomized solutions, and assume that each process i has a unique id u_i
The LCR Algorithm

Assumption: The ring is unidirectional; Only leader produces output; \(n \) is unknown

Solution: At each round, each process sends the maximal id it had seen that it didn’t send before. If it receives own id, it becomes leader

A state of process \(i \) consists of:

- \(\max_i \) an id, initially \(u_i \)
- \(\text{status}_i \in \{\text{unknown, leader}\} \) initially \(\text{unknown} \)

The transition function of process \(i \) is:

- (send) \(\text{send}(\max_i) \)
- (receive) \(\text{receive}(u) \)
- (local) \(\text{if } u > \max_i \text{ then } \max_i := u \)
 \(\text{if } \max_i = u_i \text{ then } \text{status} := \text{leader} \)
Let i^* be the process with maximal id u^*. Then:

Claim 1: For every $r = 0, \ldots, n - 1$, after r rounds $msg_{i^*+r} = u^*$

Proof: By induction on r. Base case is trivial. Assume true for $r' \in \{0..n - 2\}$. Then at round $r' + 1$ process $i^* + r'$ sends u^*. Since u^* is the maximal in the ring, after $r' + 1$ rounds $msg_{i^*+r'+1} = u^*$

Corollary: After n rounds, $status_{i^*} = \text{leader}$
Let i^* be the process with maximal id u^*. Then:

Claim 1: For every $r = 0, \ldots, n - 1$, after r rounds $msg_{i^* + r} = u^*$

Corollary: After n rounds, $status_{i^*} = \text{leader}$

Claim 2: For every $j \neq i^*$, its always the case that $status_j \neq \text{leader}$

Proof: By induction on the rounds, prove that for every $r = 0, \ldots, n - 1$, after r rounds, for no j it is the case that msg_j is the r^{th} smallest id among u_1, \ldots, u_n. Consequently, the only id that reaches its owner is u^*
Complexity and Variants

- The time complexity is n rounds until a leader is announced. The message complexity is $O(n^2)$.
- The algorithm is correct when processes send only messages they didn’t previously send. Worst time complexity remains, but best time improves.
- If halting is required, then leader can send a leader message around the ring, costing n rounds (and n message, leaving message complexity intact.)
- If variable start times are assumed, then algorithm still works, with possible cost of $n - 1$ rounds.
- The algorithm is not resilient to failures.
Assumptions: LCR with bidirectionality

Protocol consists of phases

phase p takes $2 \cdot 2^p$ rounds

in a phase, active processes send their id in both directions to their 2^{p-1} consecutive neighbours

ids get relayed only if $> \text{highest id seen}$

A process whose id returns from both directions (2^{p-1} steps) remains active

A process that receives its own id in outbound message becomes leader
Communication Complexity:

- First phase has at most $4n$ messages
- After phase p, only one of $2^{p-1} + 1$ processes “survives”, and generates at most $4 \cdot 2^p$ messages
- Thus, at each phase $p > 1$, there are at most
 \[
 4 \left(2^p \cdot \left\lfloor \frac{n}{2^{p-1} + 1} \right\rfloor \right)
 \]
 messages
- There are at least $1 + \lceil \log n \rceil$ rounds
- Thus, upper bound of $8n(1 + \lceil \log n \rceil) = O(n \log n)$
Analysis of Protocol

<table>
<thead>
<tr>
<th>Phase</th>
<th>Out rounds start</th>
<th>In rounds start</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>k</td>
<td>$2^k - 2$</td>
<td>$3 \cdot 2^{k-1} - 2$</td>
</tr>
</tbody>
</table>

- A message need only contain a process id
- If P_i receives u in round k, it knows what to do with it
- P_i becomes leader when it receives its outbound message (as an outbound message) (it will receive it from both directions at the same round)
Time Complexity

Each phase p, but the last one, takes $2 \cdot 2^{p-1}$ rounds. The last phase takes n rounds. There are at most $1 + \lceil \log n \rceil$ phases, and therefore

$$\sum_{p=1}^{\lceil \log n \rceil} 2^p + n$$ rounds. Since

$$\sum_{p=1}^{\lceil \log n \rceil} 2^p = 2^{\lceil \log n \rceil + 1} - 1$$

total time complexity is:

$$n + 2^{\lceil \log n \rceil + 1} - 1 \approx n + 2 \cdot 2^{\log n} = 3 \cdot n$$
A Randomized Solution

Solution from Itai and Rodeh, in The Lord of the Ring or Probabilistic Methods for Breaking Symmetry in Distributed Networks, *Tech. report RJ 3110, IBM San Jose, 1981*

Previous solutions broke symmetry was broken by ids

Here processes are *fully symmetric*

n (the size of the ring) in known;

There exists a number K shared by all the processes (we can take $K = n$)

Ring is unidirectional
Initially, all processes are *initiating*

At the beginning of each phase, an initiating process P_i randomly draws $K_i \in [1..K]$ with equal probability which is its id for phase. Non-initiating process have id 0

Each process sends its id along the ring, and relays any id it receives

At the end of n rounds, each process inspects the n ids; If there is some id $u > 0$ that is held by a single process, the process who generated the maximal such id in this phase is *leader*

Otherwise, only processes who generated the maximal (non-unique!) id are *initiating*

There are executions with no *leader*
An Example of a Run

\(n = 5 \):

- At \textit{first} phase:
 \[u_1 = u_2 = 3; \quad u_3 = 2; \quad u_4 = u_5 = 1; \]
 Only \(P_1 \) and \(P_2 \) remain initiating

- Assume that at the \textit{second} phase:
 \[u_1 = u_2 = 3; \quad (u_3 = u_4 = u_5 = 0) \]

\(P_1 \) and \(P_2 \) remain only initiators

- The probability of the event that both processes draw the same numbers is \(\frac{1}{5} \). The probability that they repeatedly do with \(\ell \) consecutive times is \(\left(\frac{1}{5} \right)^\ell \). Thus, the protocol terminates with probability 1
Complexity of IR Protocol

- If the probabilities of the random choices are all \(p = \frac{1}{2} \), then at each phase we expect \(p \) of the processes to lose.

- Expected number of rounds is \(\mathcal{O}(n \log n) \), and the expected number of messages is \(\mathcal{O}(n^2 \log n) \).

- Complexity can be improved E.g., limit range of values to number of initiators. Expected number of phases is \(\mathcal{O}(3 \cdot n) \), leading to \(\mathcal{O}(n^2) \) messages.
Comments on Leader Election

- If there is a leader, then n can be computed. If n is known, then a leader can be elected. But can a leader be elected and n computed in a ring where neither is à-priori known?

- How much do we depend on the lock-step assumptions?

- The non-randomized protocols are based only on comparison between ids. The IR protocol also uses counting, has better complexity. Can comparison based protocols do better?