Chapter 3: Relational Model

- Structure of Relational Databases
- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus
- Extended Relational-Algebra-Operations
- Modification of the Database
- Views

Basic Structure

- Given sets $A_1, A_2, ..., A_n$, a relation r is a subset of
 $A_1 \times A_2 \times ... \times A_n$
 Thus a relation is a set of n-tuples $(a_1, a_2, ..., a_n)$ where
 $a_i \in A_i$
- Example: If
 \[
 \begin{align*}
 \text{customer-name} &= \{\text{Jones, Smith, Curry, Lindsay}\} \\
 \text{customer-street} &= \{\text{Main, North, Park}\} \\
 \text{customer-city} &= \{\text{Harrison, Rye, Pittsfield}\}
 \end{align*}
 \]
 Then $r = \{(\text{Jones, Main, Harrison}), (\text{Smith, North, Rye}), (\text{Curry, North, Rye}), (\text{Lindsay, Park, Pittsfield})\}$ is a relation over
 $\text{customer-name} \times \text{customer-street} \times \text{customer-city}$
Relation Schema

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema

$Customer-schema = (customer-name, customer-street, customer-city)$

- $r(R)$ is a relation on the relation schema R

$customer (Customer-schema)$

Relation Instance

- The current values (relation instance) of a relation are specified by a table.

- An element t of r is a tuple; represented by a row in a table.

<table>
<thead>
<tr>
<th>customer-name</th>
<th>customer-street</th>
<th>customer-city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>Main</td>
<td>Harrison</td>
</tr>
<tr>
<td>Smith</td>
<td>North</td>
<td>Rye</td>
</tr>
<tr>
<td>Curry</td>
<td>North</td>
<td>Rye</td>
</tr>
<tr>
<td>Lindsay</td>
<td>Park</td>
<td>Pittsfield</td>
</tr>
</tbody>
</table>

$customer$
Keys

- Let $K \subseteq R$
- K is a **superkey** of R if values for K are sufficient to identify a unique tuple of each possible relation $r(R)$. By “possible r” we mean a relation r that could exist in the enterprise we are modeling.
 Example: \{customer-name, customer-street\} and \{customer-name\} are both superkeys of Customer, if no two customers can possibly have the same name.
- K is a **candidate key** if K is minimal.
 Example: \{customer-name\} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

Determining Keys from E-R Sets

- **Strong entity set.** The primary key of the entity set becomes the primary key of the relation.
- **Weak entity set.** The primary key of the relation consists of the union of the primary key of the strong entity set and the discriminator of the weak entity set.
- **Relationship set.** The union of the primary keys of the related entity sets becomes a super key of the relation.
 For binary many-to-many relationship sets, above super key is also the primary key.
 For binary many-to-one relationship sets, the primary key of the “many” entity set becomes the relation’s primary key.
 For one-to-one relationship sets, the relation’s primary key can be that of either entity set.
Query Languages

- Language in which user requests information from the database.
- Categories of languages:
 - Procedural
 - Non-procedural
- “Pure” languages:
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus
- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators
 - select
 - project
 - union
 - set difference
 - Cartesian product
 - rename
- The operators take two or more relations as inputs and give a new relation as a result.
Select Operation

- Notation: \(\sigma_P(r) \)
- Defined as:

\[
\sigma_P(r) = \{ t \mid t \in r \text{ and } P(t) \}
\]

Where \(P \) is a formula in propositional calculus, dealing with terms of the form:

- \(<\text{attribute}> = <\text{attribute}>\)
- \(<\text{attribute}> \neq <\text{attribute}>\)
- \(<\text{attribute}> < <\text{attribute}>\)
- \(<\text{attribute}> \geq <\text{attribute}>\)
- \(<\text{constant}> < <\text{attribute}>\)
- \(<\text{constant}> = <\text{attribute}>\)
- \(<\text{constant}> \neq <\text{attribute}>\)

("connected by": \(\land\) (and), \(\lor\) (or), \(\neg\) (not))

Select Operation – Example

- Relation \(r \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\beta)</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\beta)</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>

- \(\sigma_{A=B \land D > 5}(r) \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\beta)</td>
<td>23</td>
<td>10</td>
</tr>
</tbody>
</table>
Project Operation

- Notation:

\[\Pi_{A_1, A_2, \ldots, A_k}(r) \]

where \(A_1, A_2 \) are attribute names and \(r \) is a relation name.

- The result is defined as the relation of \(k \) columns obtained by erasing the columns that are not listed.

- Duplicate rows removed from result, since relations are sets.

Project Operation – Example

- Relation \(r \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

- \(\Pi_{A, C}(r) \)

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
</tr>
</tbody>
</table>

\[= \]

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
</tr>
</tbody>
</table>
Union Operation

- Notation: \(r \cup s \)
- Defined as:

\[
 r \cup s = \{ t \mid t \in r \text{ or } t \in s \}
\]

- For \(r \cup s \) to be valid,
 1. \(r, s \) must have the same arity (same number of attributes)
 2. The attribute domains must be compatible (e.g., 2nd column of \(r \) deals with the same type of values as does the 2nd column of \(s \))

Union Operation – Example

- Relations \(r, s \):

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(r \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>3</td>
</tr>
</tbody>
</table>

\(s \)

- \(r \cup s \)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>3</td>
</tr>
</tbody>
</table>
Set Difference Operation

- Notation: \(r - s \)
- Defined as:

\[
r - s = \{ t \mid t \in r \text{ and } t \notin s \}
\]

- Set differences must be taken between compatible relations.
 - \(r \) and \(s \) must have the same arity
 - attribute domains of \(r \) and \(s \) must be compatible

Set Difference Operation – Example

- Relations \(r, s \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(r \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>3</td>
</tr>
</tbody>
</table>

\(s \)

- \(r - s \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
</tbody>
</table>
Cartesian-Product Operation

- Notation: \(r \times s \)
- Defined as:

\[
\{ t q \mid t \in r \text{ and } q \in s \}
\]

- Assume that attributes of \(r(R) \) and \(s(S) \) are disjoint. (That is, \(R \cap S = \emptyset \)).
- If attributes of \(r(R) \) and \(s(S) \) are not disjoint, then renaming must be used.

Cartesian-Product Operation – Example

- Relations \(r, s \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
</tr>
</tbody>
</table>

\(r \)

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>(\beta)</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>(\beta)</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>10</td>
<td>–</td>
</tr>
</tbody>
</table>

\(s \)

- \(r \times s \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>(\alpha)</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>(\beta)</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>(\beta)</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1</td>
<td>(\gamma)</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
<td>(\alpha)</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
<td>(\beta)</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
<td>(\beta)</td>
<td>20</td>
<td>–</td>
</tr>
<tr>
<td>(\beta)</td>
<td>2</td>
<td>(\gamma)</td>
<td>10</td>
<td>–</td>
</tr>
</tbody>
</table>
Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$
- $r \times s$
 - Notation: $r \bowtie s$
 - Let r and s be relations on schemas R and S respectively. The result is a relation on schema $R \cup S$ which is obtained by considering each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, a tuple t is added to the result, where
 * t has the same value as t_r on r
 * t has the same value as t_s on s

Example:

$$R = (A, B, C, D)$$
$$S = (E, B, D)$$

- Result schema = (A, B, C, D, E)
- $r \bowtie s$ is defined as:

$$\Pi_{r.A,r.B,r.C,r.D,s.E}(\sigma_{r.B=s.B \land r.D=s.D}(r \times s))$$
Natural Join Operation – Example

- **Relations** r, s:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>a</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>γ</td>
<td>a</td>
</tr>
<tr>
<td>γ</td>
<td>4</td>
<td>β</td>
<td>b</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>a</td>
</tr>
<tr>
<td>δ</td>
<td>2</td>
<td>β</td>
<td>b</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>α</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>β</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>γ</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>δ</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>ϵ</td>
</tr>
</tbody>
</table>

- $r \Join s$:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>a</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>γ</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>a</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>α</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>γ</td>
</tr>
<tr>
<td>δ</td>
<td>2</td>
<td>β</td>
<td>b</td>
</tr>
</tbody>
</table>

Division Operation

- **$r \div s$**

- Suited to queries that include the phrase “for all.”

- Let r and s be relations on schemas R and S respectively, where
 - $R = (A_1, \ldots, A_m, B_1, \ldots, B_n)$
 - $S = (B_1, \ldots, B_n)$

 The result of $r \div s$ is a relation on schema $R - S = (A_1, \ldots, A_m)$

\[
 r \div s = \{ t \mid t \in \Pi_{R-S}(r) \land \forall u \in s (tu \in r) \}
\]
Division Operation (Cont.)

- Property
 - Let \(q = r \div s \)
 - Then \(q \) is the largest relation satisfying: \(q \times s \subseteq r \)

- Definition in terms of the basic algebra operation
 Let \(r(R) \) and \(s(S) \) be relations, and let \(S \subseteq R \)

\[
r \div s = \Pi_{R-S} (r) - \Pi_{R-S} ((\Pi_{R-S} (r) \times s) - \Pi_{R-S,S}(r))
\]

To see why:
 - \(\Pi_{R-S,S}(r) \) simply reorders attributes of \(r \)
 - \(\Pi_{R-S}((\Pi_{R-S} (r) \times s) - \Pi_{R-S,S}(r)) \) gives those tuples \(t \) in \(\Pi_{R-S}(r) \) such that for some tuple \(u \in s \), \(tu \notin r \).

Division Operation – Example

- Relations \(r, s \):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>3</td>
</tr>
<tr>
<td>(\beta)</td>
<td>1</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>1</td>
</tr>
<tr>
<td>(\delta)</td>
<td>3</td>
</tr>
<tr>
<td>(\delta)</td>
<td>4</td>
</tr>
<tr>
<td>(\delta)</td>
<td>6</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>1</td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

- \(r \div s \):

<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
</tr>
<tr>
<td>(\epsilon)</td>
</tr>
</tbody>
</table>
Another Division Example

- Relations r, s:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>a</td>
<td>α</td>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>a</td>
<td>γ</td>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>a</td>
<td>γ</td>
<td>b</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>a</td>
<td>γ</td>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>a</td>
<td>γ</td>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>γ</td>
<td>a</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>γ</td>
<td>b</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>a</td>
<td>β</td>
<td>b</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

$\rightarrow s$

- $r \div s$

Assignment Operation

- The assignment operation (\leftarrow) provides a convenient way to express complex queries; write query as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.

- Assignment must always be made to a temporary relation variable.

- Example: Write $r \div s$ as

\[
\begin{align*}
temp1 & \leftarrow \Pi_{R-S} (r) \\
temp2 & \leftarrow \Pi_{R-S} ((temp1 \times s) - \Pi_{R-S,S}(r)) \\
result & = temp1 - temp2
\end{align*}
\]

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow.

- May use variable in subsequent expressions.
Example Queries

- Find all customers who have an account from at least the “Downtown” and “Uptown” branches.
 - Query 1
 \[\Pi_{CN}(\sigma_{BN = \text{"Downtown"}}(\text{depositor} \Join \text{account})) \cap \Pi_{CN}(\sigma_{BN = \text{"Uptown"}}(\text{depositor} \Join \text{account})) \]
 where \(CN \) denotes customer-name and \(BN \) denotes branch-name.
 - Query 2
 \[\Pi_{\text{customer-name, branch-name}}(\text{depositor} \Join \text{account}) \]
 \[\div \ \rho_{\text{temp(branch-name)}}(\{(\text{"Downtown"}), (\text{"Uptown"})\}) \]

Example Queries

- Find all customers who have an account at all branches located in Brooklyn.
 \[\Pi_{\text{customer-name, branch-name}}(\text{depositor} \Join \text{account}) \]
 \[\div \ \Pi_{\text{branch-name}}(\sigma_{\text{branch-city} = \text{"Brooklyn"}}(\text{branch})) \]
Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form

\[\{ t \mid P(t) \} \]

- It is the set of all tuples \(t \) such that predicate \(P \) is true for \(t \)
- \(t \) is a tuple variable; \(t[A] \) denotes the value of tuple \(t \) on attribute \(A \)
- \(t \in r \) denotes that tuple \(t \) is in relation \(r \)
- \(P \) is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., \(<\), \(\leq\), \(=\), \(!=\), \(>\), \(\geq\))
3. Set of connectives: and (\(\land\)), or (\(\lor\)), not (\(\neg\))
4. Implication (\(\Rightarrow\)): \(x \Rightarrow y \), if \(x \) is true, then \(y \) is true

\[x \Rightarrow y \equiv \neg x \lor y \]
5. Set of quantifiers:
 - \(\exists t \in r \ (Q(t)) \equiv \) “there exists” a tuple \(t \) in relation \(r \) such that predicate \(Q(t) \) is true
 - \(\forall t \in r \ (Q(t)) \equiv Q \) is true “for all” tuples \(t \) in relation \(r \)
Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (branch-name, account-number, balance)

loan (branch-name, loan-number, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Example Queries

- Find the branch-name, loan-number, and amount for loans of over $1200

\[\{ t \mid t \in \text{loan} \land t[\text{amount}] > 1200 \} \]

- Find the loan number for each loan of an amount greater than $1200

\[\{ t \mid \exists s \in \text{loan} (t[\text{loan-number}] = s[\text{loan-number}] \land s[\text{amount}] > 1200) \} \]

Notice that a relation on schema [customer-name] is implicitly defined by the query
Example Queries

- Find the names of all customers having a loan, an account, or both at the bank

\[
\{ t \mid \exists s \in \text{borrower}(t[\text{customer-name}] = s[\text{customer-name}]) \land \exists u \in \text{depositor}(t[\text{customer-name}] = u[\text{customer-name}]) \}\]

- Find the names of all customers who have a loan and an account at the bank.

\[
\{ t \mid \exists s \in \text{borrower}(t[\text{customer-name}] = s[\text{customer-name}]) \land \exists u \in \text{depositor}(t[\text{customer-name}] = u[\text{customer-name}]) \}\]

Example Queries

- Find the names of all customers having a loan at the Perryridge branch

\[
\{ t \mid \exists s \in \text{borrower}(t[\text{customer-name}] = s[\text{customer-name}]) \land \exists u \in \text{loan}(u[\text{branch-name}] = \text{"Perryridge"}) \land u[\text{loan-number}] = s[\text{loan-number}]) \}\]

- Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank

\[
\{ t \mid \exists s \in \text{borrower}(t[\text{customer-name}] = s[\text{customer-name}]) \land \exists u \in \text{loan}(u[\text{branch-name}] = \text{"Perryridge"}) \land u[\text{loan-number}] = s[\text{loan-number}]) \land \neg \exists v \in \text{depositor} (v[\text{customer-name}] = t[\text{customer-name}]) \}\]
Example Queries

- Find the names of all customers having a loan from the Perryridge branch and the cities they live in:

\[\{ t \mid \exists s \in \text{loan} (s[\text{branch-name}] = \text{“Perryridge”}) \\
\land \exists u \in \text{borrower} (u[\text{loan-number}] = s[\text{loan-number}]) \\
\land t[\text{customer-name}] = u[\text{customer-name}] \\
\land \exists v \in \text{customer} (u[\text{customer-name}] = v[\text{customer-name}]) \\
\land t[\text{customer-city}] = v[\text{customer-city}]) \}\]

Example Queries

- Find the names of all customers who have an account at all branches located in Brooklyn:

\[\{ t \mid \forall s \in \text{branch} (s[\text{branch-city}] = \text{“Brooklyn”}) \Rightarrow \\
\exists u \in \text{account} (s[\text{branch-name}] = u[\text{branch-name}]) \\
\land \exists s \in \text{depositor} (t[\text{customer-name}] = s[\text{customer-name}]) \\
\land s[\text{account-number}] = u[\text{account-number}]) \}\]
Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, \(\{ t \mid \neg t \in r \} \) results in an infinite relation if the domain of any attribute of relation \(r \) is infinite.
- To guard against the problem, we restrict the set of allowable expressions to **safe** expressions.
- An expression \(\{ t \mid P(t) \} \) in the tuple relational calculus is **safe** if every component of \(t \) appears in one of the relations, tuples, or constants that appear in \(P \).

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus.
- Each query is an expression of the form:
 \[
 \{ < x_1, x_2, ..., x_n > \mid P(x_1, x_2, ..., x_n) \}
 \]
 - \(x_1, x_2, ..., x_n \) represent domain variables
 - \(P \) represents a formula similar to that of the predicate calculus
Example Queries

- Find the branch-name, loan-number, and amount for loans of over $1200:
 \[
 \{ <b, l, a> \mid <b, l, a> \in \text{loan} \land a > 1200 \}
 \]

- Find the names of all customers who have a loan of over $1200:
 \[
 \{ <c> \mid \exists b, l, a (<c, l> \in \text{borrower} \land <b, l, a> \in \text{loan} \\
 \quad \land a > 1200) \}
 \]

- Find the names of all customers who have a loan from the Perryridge branch and the loan amount:
 \[
 \{ <c, a> \mid \exists l (<c, l> \in \text{borrower} \\
 \quad \land \exists b (<b, l, a> \in \text{loan} \land b = \text{“Perryridge”})) \}
 \]

- Find the names of all customers having a loan, an account, or both at the Perryridge branch:
 \[
 \{ <c> \mid \exists l(<c, l> \in \text{borrower} \\
 \quad \land \exists b, a(<b, l, a> \in \text{loan} \land b = \text{“Perryridge”}) \\
 \quad \lor \exists a(<c, a> \in \text{depositor} \\
 \quad \land \exists b, n(<b, a, n> \in \text{account} \land b = \text{“Perryridge”})) \}
 \]

- Find the names of all customers who have an account at all branches located in Brooklyn:
 \[
 \{ <c> \mid \forall x, y, z (<x, y, z> \in \text{branch} \land y = \text{“Brooklyn”}) \Rightarrow \\
 \quad \exists a, b (<x, a, b> \in \text{account} \land <c, a> \in \text{depositor}) \}
 \]
Safety of Expressions

\[\{ \langle x_1, x_2, \ldots, x_n \rangle \mid P(x_1, x_2, \ldots, x_n) \} \]

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from \(\text{dom}(P) \) (that is, the values appear either in \(P \) or in a tuple of a relation mentioned in \(P \)).

2. For every “there exists” subformula of the form \(\exists x \ (P_1(x)) \), the subformula is true if and only if there is a value \(x \) in \(\text{dom}(P_1) \) such that \(P_1(x) \) is true.

3. For every “for all” subformula of the form \(\forall x \ (P_1(x)) \), the subformula is true if and only if \(P_1(x) \) is true for all values \(x \) from \(\text{dom}(P_1) \).

Extended Relational-Algebra-Operations

- Generalized Projection
- Outer Join
- Aggregate Functions
Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

\[\Pi_{F_1, F_2, \ldots, F_n}(E) \]

- \(E \) is any relational-algebra expression
- Each of \(F_1, F_2, \ldots, F_n \) are arithmetic expressions involving constants and attributes in the schema of \(E \).
- Given relation \textit{credit-info}(\textit{customer-name, limit, credit-balance})
 find how much more each person can spend:

\[\Pi_{\text{customer-name, limit} - \text{credit-balance}}(\text{credit-info}) \]

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples from one relation that do not match tuples in the other relation to the result of the join.
- Uses \textit{null} values:
 - \textit{null} signifies that the value is unknown or does not exist.
 - All comparisons involving \textit{null} are \textit{false} by definition.
Outer Join – Example

- Relation *loan*

```
<table>
<thead>
<tr>
<th>branch-name</th>
<th>loan-number</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>3000</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-230</td>
<td>4000</td>
</tr>
<tr>
<td>Perryridge</td>
<td>L-260</td>
<td>1700</td>
</tr>
</tbody>
</table>
```

- Relation *borrower*

```
<table>
<thead>
<tr>
<th>customer-name</th>
<th>loan-number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>L-170</td>
</tr>
<tr>
<td>Smith</td>
<td>L-230</td>
</tr>
<tr>
<td>Hayes</td>
<td>L-155</td>
</tr>
</tbody>
</table>
```

Outer Join – Example

- *loan* \(\bowtie\) *Borrower*

```
<table>
<thead>
<tr>
<th>branch-name</th>
<th>loan-number</th>
<th>amount</th>
<th>customer-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>3000</td>
<td>Jones</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-230</td>
<td>4000</td>
<td>Smith</td>
</tr>
</tbody>
</table>
```

- *loan* \(\bowtie\) *borrower*

```
<table>
<thead>
<tr>
<th>branch-name</th>
<th>loan-number</th>
<th>amount</th>
<th>customer-name</th>
<th>loan-number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>3000</td>
<td>Jones</td>
<td>L-170</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-230</td>
<td>4000</td>
<td>Smith</td>
<td>L-230</td>
</tr>
<tr>
<td>Perryridge</td>
<td>L-260</td>
<td>1700</td>
<td>null</td>
<td>null</td>
</tr>
</tbody>
</table>
```
Outer Join – Example

- $\text{loan} \bowtie \text{Borrower}$

<table>
<thead>
<tr>
<th>branch-name</th>
<th>loan-number</th>
<th>amount</th>
<th>customer-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>3000</td>
<td>Jones</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-230</td>
<td>4000</td>
<td>Smith</td>
</tr>
<tr>
<td>null</td>
<td>L-155</td>
<td>null</td>
<td>Hayes</td>
</tr>
</tbody>
</table>

- $\text{loan} \bowtie \bowtie \text{borrower}$

<table>
<thead>
<tr>
<th>branch-name</th>
<th>loan-number</th>
<th>amount</th>
<th>customer-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>3000</td>
<td>Jones</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-230</td>
<td>4000</td>
<td>Smith</td>
</tr>
<tr>
<td>Perryridge</td>
<td>L-260</td>
<td>1700</td>
<td>null</td>
</tr>
<tr>
<td>null</td>
<td>L-155</td>
<td>null</td>
<td>Hayes</td>
</tr>
</tbody>
</table>

Aggregate Functions

- Aggregation operator \mathcal{G} takes a collection of values and returns a single value as a result.
 - avg: average value
 - min: minimum value
 - max: maximum value
 - sum: sum of values
 - count: number of values

$$\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_n \mathcal{G} F_1 A_1, F_2 A_2, \ldots, F_m A_m (E)$$

- E is any relational-algebra expression
- $\mathcal{G}_1, \mathcal{G}_2, \ldots, \mathcal{G}_n$ is a list of attributes on which to group
- F_i is an aggregate function
- A_i is an attribute name
Aggregate Function – Example

- Relation r:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>7</td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>7</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>3</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>10</td>
</tr>
</tbody>
</table>

- $\sum_{C}(r)$

<table>
<thead>
<tr>
<th>sum-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
</tr>
</tbody>
</table>

Aggregate Function – Example

- Relation `account` grouped by `branch-name`:

<table>
<thead>
<tr>
<th>branch-name</th>
<th>account-number</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perryridge</td>
<td>A-102</td>
<td>400</td>
</tr>
<tr>
<td>Perryridge</td>
<td>A-201</td>
<td>900</td>
</tr>
<tr>
<td>Brighton</td>
<td>A-217</td>
<td>750</td>
</tr>
<tr>
<td>Brighton</td>
<td>A-215</td>
<td>750</td>
</tr>
<tr>
<td>Redwood</td>
<td>A-222</td>
<td>700</td>
</tr>
</tbody>
</table>

- $branch-name \sum_{balance}(account)$

<table>
<thead>
<tr>
<th>branch-name</th>
<th>sum-balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perryridge</td>
<td>1300</td>
</tr>
<tr>
<td>Brighton</td>
<td>750</td>
</tr>
<tr>
<td>Redwood</td>
<td>700</td>
</tr>
</tbody>
</table>
Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating

- All these operations are expressed using the assignment operator.

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes.
- A deletion is expressed in relational algebra by:

\[r \leftarrow r - E \]

where \(r \) is a relation and \(E \) is a relational algebra query.
Deletion Examples

- Delete all account records in the Perryridge branch.
 \[
 \text{account} \leftarrow \text{account} - \sigma_{\text{branch-name} = \text{"Perryridge"}} (\text{account})
 \]

- Delete all loan records with amount in the range 0 to 50.
 \[
 \text{loan} \leftarrow \text{loan} - \sigma_{\text{amount} \geq 0 \text{ and amount} \leq 50} (\text{loan})
 \]

- Delete all accounts at branches located in Needham.
 \[
 \begin{align*}
 r_1 & \leftarrow \sigma_{\text{branch-city} = \text{"Needham"}} (\text{account} \bowtie \text{branch}) \\
 r_2 & \leftarrow \Pi_{\text{branch-name, account-number, balance}} (r_1) \\
 r_3 & \leftarrow \Pi_{\text{customer-name, account-number}} (r_2 \bowtie \text{depositor}) \\
 \text{account} & \leftarrow \text{account} - r_2 \\
 \text{depositor} & \leftarrow \text{depositor} - r_3
 \end{align*}
 \]

Insertion

- To insert data into a relation, we either:
 - specify a tuple to be inserted
 - write a query whose result is a set of tuples to be inserted

- In relational algebra, an insertion is expressed by:
 \[
 r \leftarrow r \cup E
 \]
 where \(r \) is a relation and \(E \) is a relational algebra expression.

- The insertion of a single tuple is expressed by letting \(E \) be a constant relation containing one tuple.
Insertion Examples

- Insert information in the database specifying that Smith has $1200 in account A-973 at the Perryridge branch.

\[
\text{account} \leftarrow \text{account} \cup \{("\text{Perryridge", A-973, 1200})\}
\]
\[
\text{depositor} \leftarrow \text{depositor} \cup \{("\text{Smith", A-973})\}
\]

- Provide as a gift for all loan customers in the Perryridge branch, a $200 savings account. Let the loan number serve as the account number for the new savings account.

\[
\text{r}_1 \leftarrow (\sigma_{\text{branch-name} = "\text{Perryridge"}} (\text{borrower} \bowtie \text{loan}))
\]
\[
\text{account} \leftarrow \text{account} \cup \Pi_{\text{branch-name, loan-number}, 200} (\text{r}_1)
\]
\[
\text{depositor} \leftarrow \text{depositor} \cup \Pi_{\text{customer-name, loan-number}} (\text{r}_1)
\]

Updating

- A mechanism to change a value in a tuple without changing all values in the tuple
- Use the generalized projection operator to do this task

\[
r \leftarrow \Pi_{F_1, F_2, \ldots, F_n} (r)
\]

- Each \(F_i\) is either the \(i\)th attribute of \(r\), if the \(i\)th attribute is not updated, or, if the attribute is to be updated
- \(F_i\) is an expression, involving only constants and the attributes of \(r\), which gives the new value for the attribute
Update Examples

- Make interest payments by increasing all balances by 5 percent.

\[
\text{account} \leftarrow \Pi_{BN,AN,BAL} \leftarrow \text{BAL} \times 1.05 \ (\text{account})
\]

where \(\text{BAL} \), \(\text{BN} \) and \(\text{AN} \) stand for balance, branch-name and account-number, respectively.

- Pay all accounts with balances over $10,000 6 percent interest and pay all others 5 percent.

\[
\text{account} \leftarrow \Pi_{BN,AN,BAL} \leftarrow \text{BAL} \times 1.06 \ (\sigma_{\text{BAL} > 10000} \ (\text{account}))
\cup \Pi_{BN,AN,BAL} \leftarrow \text{BAL} \times 1.05 \ (\sigma_{\text{BAL} \leq 10000} \ (\text{account}))
\]

Views

- In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual relations stored in the database.)

- Consider a person who needs to know a customer's loan number but has no need to see the loan amount. This person should see a relation described, in the relational algebra, by

\[
\Pi_{\text{customer-name, loan-number}} \ (\text{borrower} \bowtie \text{loan})
\]

- Any relation that is not part of the conceptual model but is made visible to a user as a “virtual relation” is called a view.
A view is defined using the create view statement which has the form

\[
\text{create view } v \text{ as } <\text{query expression}>
\]

where \(<\text{query expression}>> is any legal relational algebra query expression. The view name is represented by \(v\).

Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.

View definition is not the same as creating a new relation by evaluating the query expression. Rather, a view definition causes the saving of an expression to be substituted into queries using the view.

Consider the view (named all-customer) consisting of branches and their customers.

\[
\text{create view all-customer as}
\]

\[
\Pi_{\text{branch-name, customer-name}} (\text{depositor } \bowtie \text{ account})
\cup \Pi_{\text{branch-name, customer-name}} (\text{borrower } \bowtie \text{ loan})
\]

We can find all customers of the Perryridge branch by writing:

\[
\Pi_{\text{customer-name}} (\sigma_{\text{branch-name} = \text{"Perryridge"}} (\text{all-customer}))
\]
Updates Through Views

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.

- Consider the person who needs to see all loan data in the loan relation except amount. The view given to the person, branch-loan, is defined as:

  ```
  create view branch-loan as
  \( \Pi_{\text{branch-name, loan-number}} (\text{loan}) \)
  ```

 Since we allow a view name to appear wherever a relation name is allowed, the person may write:

  ```
  branch-loan ← branch-loan \cup \{ (\text{“Perryridge”, L-37}) \}
  ```

Updates Through Views (Cont.)

- The previous insertion must be represented by an insertion into the actual relation loan from which the view branch-loan is constructed.

- An insertion into loan requires a value for amount. The insertion can be dealt with by either
 - rejecting the insertion and returning an error message to the user
 - inserting a tuple (“Perryridge”, L-37, null) into the loan relation
Views Defined Using Other Views

- One view may be used in the expression defining another view.
- A view relation \(v_1 \) is said to depend directly on a view relation \(v_2 \) if \(v_2 \) is used in the expression defining \(v_1 \).
- A view relation \(v_1 \) is said to depend on view relation \(v_2 \) if and only if there is a path in the dependency graph from \(v_2 \) to \(v_1 \).
- A view relation \(v \) is said to be recursive if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view \(v_1 \) be defined by an expression \(e_1 \) that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

 \[
 \text{repeat}
 \begin{align*}
 &\text{Find any view relation } v_i \text{ in } e_1 \\
 &\text{Replace the view relation } v_i \text{ by the expression defining } v_i
 \end{align*}
 \text{until no more view relations are present in } e_1
 \]

- As long as the view definitions are not recursive, this loop will terminate.