Assignment 2. **Analysis of loop algorithms, applications of sorting.**

Given January 29, due February 5.

1. We have two sets of objects, A and B, each with n objects. We have a table $W(i,j) = \text{dist}(i,j)$ that gives the (presumably precomputed) distances between object i in A and object j in B. We do not have, for example, the distance between object 1 and object 2 in A. Rather, $W(1,2)$ is the distance between the first object in A and the second object in B. We want to match objects in A with nearby objects in B. Our algorithm will use the following single match step. One single match step of sets A and B is to find the closest pair of objects in A and B

$$\min_{i \in A, j \in B} W(i,j).$$

We then remove the closest pair, one from A and one from B, leaving A and B with $n - 1$ elements each. The total match process is to do the single match operation n times until every object from the original A is matched with some object from the original B.

a. Write pseudocode to describe this algorithm, assuming that A and B are implemented as arrays. Use a procedure `singleMatch(A,B,W,k,n)` that does the single match. Be careful to remove the matched elements from A and B so that on returning A and B have one fewer elements than before. Implement A and B as arrays of integers representing the places left at that stage. At the beginning $A = (1,2,3,...,n)$ and the same for B. Here k is the number of items left in A and B and n is the number originally, which is used for the dimension of the doubly indexed array, W.

b. What is the running time for your algorithm?

2. What is the asymptotic time of the following algorithm:

```c
for k = 1, ... , n {
    for j = 1, ... , k {
        a(j) = rand();
    }
    mergesort(a,k,temp){
        sum = 0;
        for j = 1, ... , k-1 {
            sum = sum + ( a(j+1) - a(j) ) * ( a(j+1) - a(j) );
        }
    }
    cout << " the sum is " << sum << endl; // Never mind this line.
```
The routine `rand()` produces a different random number in between 0 and 1 each time it is called.

3. We have a sorted list of real n numbers, $a(1) > a(2) > \cdots > a(n)$. For any number, x, $h(x)$ is the number of elements of a larger than x. Suggest an algorithm that will find the largest element of a that is smaller than x in time of order $\log(h(x))$.

4. We have a sorted list of n real numbers, $a(1) > a(2) > \cdots > a(n)$. Give an $O(n)$ algorithm that determines whether $a(j) = -a(i)$ for any pair i, j.