Motivation

- Emerging networked applications
 - video conferencing, distributed simulations, telepresence...
 - applications want high quality service, where quality is an application and user-specific concept

- Existing networking environments
 - made up of diverse generic resources,
 - need to be shared among cooperating and competing users

- Several problems
 - resource discovery
 - resource management
 - service composition
 - accounting, security, ...

Resource Management Requirements

- Resource allocation in space
 - allocation of an integrated set of diverse resources that meets a set of user requirements

- Resource management in time
 - runtime management on multiple time scales
 - adaptation to changing conditions and requirements

- Resource management across services
 - control how resources are shared by multiple users
 - support both isolation and cooperative sharing

- Optimization of application-specific quality criteria requires customization along all three dimensions.
 - build on lower-level services and quality guarantees

Darwin Architecture
Darwin Application Model: Virtual Networks

- **Virtual Networks**: A set of resources that are allocated and managed in an integrated fashion.
- **Nodes**:
 - desired services (computation, data processing)
 - input/output type specifications (e.g., MPEG)
- **Flows**:
 - communication between nodes
 - typed
 - quality specifications

Darwin Components

- **Resource brokers** design the virtual network (Xena)
 - identify resources that meet application needs
 - perform global domain-specific optimization of quality and cost
- **Delegates** manage the virtual network resources
 - customized runtime resource management (adaptation)
- **A hierarchical scheduler** supports the virtual network properties (H-FSC)
 - isolation and controlled dynamic sharing of resources
 - operates on both individual flows and flow aggregates
- **A signaling protocol** coordinates these three resource management mechanisms (Beagle)
 - distributes and maintains the virtual network state

Motivation for Components

Multiple Time Scales

- **Coarse**: Resource Broker
- **Medium**: Delegates
- **Fine**: Hierarchical Scheduler

Scope of Information and Actions

- **Global**: High-level
- **Restricted**: Detailed
- **Local**: Network-specific

Customization

- **Domain-specific**: Global Optimizations
- **Customized**: Policies and Actions
- **Parameters**

Darwin Architecture with Components

- **Appl**: Application
- **Library**: Library
- **Comm**: Communication
- **Service**
 - Xena
 - Resource Broker
- **Hierarchical Local RM**
 - Classifier + Scheduler
 - Beagle Delegate

- **Beagle**

- **Classifier + Scheduler**

- **Appl**: Application
- **Library**: Library
- **Comm**: Communication
Resource Brokers

- Brokers identify resources and perform optimizations using global network information and domain knowledge.
 - can be part of application, service provider, or stand alone
 - high-level coordinated requests allow optimizations to happen “under the cover”.
- Brokers implement domain-specific QoS
 - optimize quality, cost using domain specific metrics
 - tailor optimization to application preferences
- Xena: generic and video resources
 - node placement to minimize cost or optimize quality
 - insertion of transcoders to deal with flow type mismatches
 - selection of level of video quality
 - tradeoffs between computation and communication
Runtime Resource Management (Delegates)

- Maintaining high service quality is a continuous activity
 - resource availability changes due to dynamic resource sharing
 - application needs might change
- "Presence" inside the network allows responsive, customized adaptation of resource use
 - application manages "its" resources
 - avoid roundtrip delay to endpoint
- Delegates run at each level of resource management hierarchy
 - manage subtree

Delegate Example: MPEG Frame Dropping

- 2 MPEG video streams compete with UDP traffic.
 - random packet drops result in poor performance.
 - reservations help but traffic bursts still result in high random losses.
- Delegates
 - selective dropping of B frames under congestion doubles frame rate.
 - (custom policy) reduce number of dropped frames for critical streams

Delegates: A Closer Look

- How are delegates realized?
 - Java threads running inside a VM "sandbox"
- What can delegates do?
 - monitor network status
 - queue occupancy, error flags, etc.
 - change the resources allocated to flows
 - adjust resource allocation/sharing rules
 - split and merge flows by adjusting packet classification
 - split can be used for dropping packets
 - affect routing
 - take an alternative path (via a transcoder or another compute node)
 - send and receive messages
 - coordination
- Flow-centric perspective of adaptation
 - adaptation of application end-points is outside the framework

Hierarchical Scheduling (H-FSC)

- Maintains virtual network abstraction
 - isolation between competing users
 - dynamic control over excess BW
 - hierarchy of flows and flow aggregates
- Packet classes identify flows
 - source/dest IPs, masks
 - protocol, port numbers
 - application-specific ID (e.g., MPEG)
- Hierarchical Fair Service Curve
 - independently controls BW, delay
 - determines packet scheduling policy
 - when is a packet sent on the link

Beagle Delegate Hierarchical Local RM Classifier + Scheduler
Delegate-Scheduler Handshake

Class C1schd {

 // interface with the packet scheduler
 retrieve -- get current hierarchy
 add -- add node in scheduler hierarchy
 del -- change node parameters

 // interface with packet classifier
 dsc_on -- discard class packets
 dsc_off

 // notification
 probe
 reqMonitor -- asynchronous
}

Low-level Resource Management (Beagle)

- Responsible for
 - setting up local resource managers
 - resource trees (similar to packet-class trees)
 - handles heterogeneity
 - convert flowspecs into low-level scheduler parameters
 - e.g., service curve for H-FSC scheduler
 - downloading delegates
 - resource requirements (CPU, memory, storage)
 - runtime environment: code type (Java) + runtime type (JDK)
 - list of flows

- Optimizations
 - temporal sharing of physical resources between flows

- Details in the paper

Adaptation in Darwin

- Application-oblivious
 - Hierarchical resource managers
 - adaptive packet scheduling

- Application-aware
 - Resource brokers
 - application specifies nodes, flows, flowspec + objective
 - Xena
 - allocates resources
 - inserts transcenders
 - chooses flow quality (for video flows: type known to Xena)
 - Delegates
 - flow-centric (end-point adaptation is outside framework)
 - change flow parameters, reroute flows, etc.

Summary

- Customizable resource management based on concept of a “virtual network”.
 - global domain-specific optimizations using brokers
 - delegates support responsive customize runtime resource management
 - hierarchical scheduling supports isolation and controlled resource sharing for flows and flow aggregates
 - signaling allocates resources and installs delegates based on high level resource specifications
 - customization supports application-specific QoS

- Complements Active Harmony and CC Adaptation, which focus on end-point adaptation