Interactive Visualization

- "Active Visualization"
- Additional modifications by Fangzhe Chang

Structure of the Application

![Diagram of server and client communication](Diagram.png)

Additional Details: Server

- **Main thread**
 - waits for messages from client
 - if (message := VIEW_NEW_IMAGE)
 - set up data structures that track progress of this download
 - send client "header info" (dimensions of image, its max. resolution, etc.)
 - send client "base image" (coarsest resolution image)
 - optional data compression before injection into network
 - if (message := GET_MORE_DATA)
 - send client the image data for requested level in the foveal region around requested position
 - local data structures ensure same data is not retransmitted
 - optional data compression before injection into network
- **Image can be preloaded into memory or loaded on demand from disk**
 - we will assume for this project that it is preloaded

COURSE PROJECT

Designing an Adaptation Strategy for an Interactive Visualization Application

November 9, 1999
Additional Details: Client

Two threads

- **Processing thread**
 - send VIEW_NEW_IMAGE request to server
 - waits for response and saves received data into a structure
 - send one or more GET_MORE_DATA requests
 - correspond to new mouse position (or increments from previous one)
 - each request is composed of multiple messages, one per level
 - each message: (i, x, y, r)
 - wait for responses, one per level and save data into a structure

- **Display thread (simple message loop)**
 - set up display window and base image
 - wait for either a mouse click or additional display data
 - display image increments as and when they arrive

Code Status

- Application runs on Windows NT platforms

- TCP/Ethernet version of code will be available soon
 - will be installed by tomorrow on the machines of the PDSG NT lab (715 Broadway, 7th Floor)
 - can be downloaded tomorrow from http://www.cs.nyu.edu/vijayk/classproject.zip
 - send questions to fangzhe@cs.nyu.edu

- Remaining pieces will be available by next week
 - FM/Myrinet version of application
 - execution environment that permits control over application CPU share and network bandwidth
 - I shall describe both of these on Nov. 16th

Adaptation in Active Visualization

Metrics of interest

- Total download time
- Average Response Time
- Image resolution level

Parameters affecting behavior

- Image resolution level
- Fovea size/increment
- Choice of (if) compression algorithm

Resources affecting behavior

- CPU capacity
- Amount of physical memory
- Network bandwidth
- Disk bandwidth

Application Resource Profiles

[Graphs showing resource profiles]
Project Objective

Design an adaptation strategy that delivers the best performance for the active visualization application over a range of system load scenarios.

- Specifically, you need to modify the application so that it can detect changes in the following and appropriately adapt its behavior:
 - CPU load at the server
 - CPU load at the client
 - client-server bandwidth

- Adaptation can happen at:
 - the server
 - the client
 - the Myrinet network card

What Needs to Happen?

- **Server CPU load goes up**
 - offload work to network/client
 - go from a compute-intensive compression algorithm to no compression
 - okay to send the same data multiple times
 - degrade quality of connection
 - switch to a smaller frame size
 - switch to a lower level of resolution

- **Client CPU load goes up**
 - offload work to server/network
 - server assembles image for display
 - data is sent without compression
 - some processing happens on network coprocessor
 - degrade quality of connection

- **Network load goes up**
 - offload work to server/client
 - switch to a more compute-intensive/better compression algorithm
 - minimize amount of data that needs to be transmitted
 - degrade quality of connection

What does an Adaptation Strategy Involve?

- **How are changes in resource availability detected?**

- **When is adaptation triggered?**
 - e.g., what does low/high CPU load mean?

- **What happens as a result of the adaptation?**
 - i.e., which new behavior is chosen (from multiple choices)?
 - what are the policies guiding this selection (static/dynamic)?

- **How is adaptation implemented?**
 - e.g., what does it mean to switch compression algorithms when a message is in transit?

What Do I Expect?

- Two pieces
 - An adaptation strategy that (ideally) works for many applications
 - A realization of this strategy in the Active Visualization application
 - clean separation of different components of the strategy
 - okay to demonstrate only a subset of the overall strategy
 - e.g., adaptation in only the network coprocessor

What must be handed in

- Any code you develop
- A project writeup (no more than 20 pages)
- Due date: December 21, 1999
How to Get There?

1. Form project groups (2-3 people) today!
2. Become familiar with the code (10 days)
 - can use PDSG NT lab (715 Broadway, 7th Floor)
 - can also install on your own (the TCP/IP version)
3. Develop your own adaptation strategies
 - answer the questions on Slide 11
 - based on papers discussed in the class lectures
 - you can discuss this in class Nov. 16th and 23rd
 - each group will present every lecture
4. Implement your strategy and evaluate it
 - present updates in class on Nov. 30th and Dec. 7th

◆ Talk to me and Fangzhe