Problem Set 6
(due Monday, December 7)

Problem 1 Let $G = (V, E)$ be a weighted digraph. Design an algorithm to list the vertices of a negative-weight cycle in G, if one exists. Your algorithm should run in time $O(mn)$.

Problem 2 Let G be a weighted digraph, and let s and t be two vertices in G. The bottleneck of a path is the weight of the heaviest edge on that path. Design an algorithm to find the path from s to t of minimum bottleneck. Your algorithm should run in time $O(m + n \log n)$.

Problem 3 Let G be a weighted digraph such that each edge is colored red or blue and such that each edge weight is nonnegative. Let s and t be two vertices in G. We are looking for the shortest path from s to t that consists of (zero or more) red edges followed by (zero or more) blue edges. Design an algorithm to solve this problem. Your algorithm should run in time $O(m + n \log n)$.

Problem 4 Let $A[1..n]$ be an array of integers. An increasing subsequence of A is a subsequence of A whose integers are in nondecreasing order. (For the definition of “subsequence”, see Section 16.3 of Cormen et al.) Design an algorithm to find the longest increasing subsequence of A. Your algorithm should run in time $O(n^2)$.

Problems worthy of attack
Prove their worth by fighting back.