Problem Set 5
(due Monday, November 23)

Problem 1 Given a digraph G, say that a vertex v is a sink in G if every other vertex is an in-neighbor of v, but no vertex is an out-neighbor of v. Design an algorithm that, given the adjacency matrix of a digraph, determines whether the digraph contains a sink. Your algorithm should run in time $O(n)$, where n is the number of vertices.

Problem 2 Design an algorithm that, given a dag, finds the longest path in the dag. Your algorithm should run in time $O(m + n)$, where m and n are the number of edges and vertices, respectively.

Problem 3 Design an efficient algorithm that, given a weighted graph with at least 2 spanning trees, finds the second-cheapest spanning tree.

Hint: See Problem 24.1 in the textbook for some help.

Problem 4 Suppose that you have a weighted digraph G whose weights are integers in the interval $1..5$. Design an algorithm that, given G and two vertices s and t, finds the shortest path from s to t. Your algorithm should run in time $O(m + n)$.