This document lays out general policies for the Fall 2019 edition of the undergraduate Computer Networking class and also provides some information about resources you can access.

1 Lectures

We have lectures twice a week, on Monday and Wednesday from 11-12:15pm at 101 Warren Weaver Hall. Each lecture will extend material from previous lectures, so it is important that you keep up with the material being covered during each lecture. It is important to me (Panda) that the lecture be fairly interactive. In service of this there will be participation credit, as explained in §6. As a part of most lectures we will have in-class activities which might require the use of pen and paper: please carry a pen and a notebook to class.

Use of technology during class: Some of the lectures (notably the second lecture) will require that you bring in and use laptops in the lecture. If this presents a hardship please let us know as soon as possible so we can arrange for alternatives. Beyond this, prior research (e.g., https://tinyurl.com/y6n6mtu5) has raised concerns about the use of laptops in classes, in particular showing that this might affect not just the student using laptops but also other students around them. At the same time I understand that many students rely on laptops and such to take notes, and some people like having their laptops in class. So in order to balance these concerns we are going to request (though not require) that as far as possible students not use laptops in class. If you are distracted by use of laptops in the classroom please e-mail the instructors and we will attempt to address these concerns.

2 Labs

We will have 5 labs throughout the course of the semester. Each lab will require writing code in Python and also submitting written answers to questions. Each lab must be completed by you individually – specifically all the code and written work must be done by you, and you must understand your code and answers. We will use automated tools to check for code similarity and can ask you to come to office hours to explain your answers, and will reduce scores appropriately if we are unconvinced by your explanations.

In general, for all labs we will try and get assignments where you need to write relatively little code (under 100 lines of code or so), but the assignments will require you to think through and implement some of the algorithms we discuss in class. As such we expect that the labs might require a fair amount of thinking time and we recommend you start early to maximize your chances of getting help.

2.1 Collaboration

We encourage you to discuss the lab problems and lectures with other students in class: such discussions are often very helpful in learning the material. However, you may not show your answers to any other student nor can you copy from someone else’s work. You may not also directly type out what another student tells you, and are instead responsible for understanding and rewriting any material by yourself. Finally, for any assignment you turn in please list all people you talked with, and any website or external sources you used. This is good academic practice and is required.

2.2 Extra Credit

Some assignments will include extra credit work. Beyond this, you can get 10% extra credit for each lab if you submit a correct version of the assignment within a week after the assignment is released. Note, that
early submission does not preclude you from correcting errors you discover later, but you will only get extra credit if your early version is correct and complete. Please see §6 for more information on how extra credit influences grades.

2.3 Late Days
You should submit each lab on time. You will lose 5% of the points for each day you are late. If you are more than 4 days late you will get a 0 on the assignment. If you need additional days for some reason, please let the course staff know as soon as possible so we can accommodate you.

3 Self Assessment
We will provide a few (generally, one or two) self-assessment questions to accompany each class. These are designed to help you check your understanding of the material in the class. While you do not need to turn these in we suggest you attempt to answer the questions to check your understanding. They might help in preparing for the next lecture, and in preparing for the exams.

4 Exams
We will have a midterm and a final. The final is cumulative, while the midterm will cover everything taught up to right before the midterm. We will have help sessions for both.

5 Getting Help
You can ask questions either during office hours or by posting on Piazza. This document will be updated with a Piazza link closer to when classes start. You should have access to Piazza by the first day of class, if you do not please e-mail apanda@cs.nyu.edu to get access. While we will strive to answer Piazza questions in a timely manner, an answer from the instructional staff can take up to 24 hours. We thus encourage you to try and answer each others questions.

6 Grading Breakdown

<table>
<thead>
<tr>
<th>Component</th>
<th>Grade Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>$5 \times 10% = 50%$</td>
</tr>
<tr>
<td>Midterm</td>
<td>20%</td>
</tr>
<tr>
<td>Final</td>
<td>30%</td>
</tr>
</tbody>
</table>

Extra Credit: We will compute the grade curve without including extra credit, and only then use extra credit to adjust where in the grade any individual falls. This means that extra credits cannot negatively impact grades in the class.

Participation: We require that you participate in class. Participation can take many forms including asking questions in class, answering questions in class, participating in group activities in class, responding to questions on Piazza (but not asking questions on Piazza), sending in corrections to notes, etc. We expect that the wide range of options available for participation will allow everyone to participate. As a result we will deduct one letter grade for any student who has not participated in class by the end of the semester. We will e-mail you if you are in danger of violating this requirement. Please e-mail the instructors if this requirement poses a barrier to your ability to take this class.

7 Providing Feedback
This version of the class is new, and somewhat different from versions I have encountered in the past. In changing the class I have probably introduced problems. Feedback from students is essential to improving future offerings, and early feedback is especially useful in making sure the class is useful and fun for everyone. We have set up a Google form at https://forms.gle/oY4pHfAkJdAkzXeV9 that you can use to provide
anonymous feedback. You can of course instead also choose to e-mail the instructors or come to our office hours to provide feedback.

8 Academic Honesty

Please do not cheat in class, it is bad for you, it is bad for us and in general does not help. We reserve the right to use tools like MOSS to ensure that any code that is submitted is yours. You must cite any external sources that you make use of for an assignment or summary. External sources include but are not limited to previously published articles, blog posts, Stackoverflow or similar sites, conversations with other people, etc. and you must provide citations for all work turned in for this class. This policy is not meant to discourage the use of external sources, instead it just codifies a standard academic practice. However, you are responsible for ensuring that you understand any code or written material you turn in for the class. We reserve the right to ask you to explain any code or written material you turn in, and failure to adequately explain this will result in a loss in points.

We will investigate any suspected academic misconduct, and will report any incidents to the department as suggested by the College of Arts and Science.

9 Acknowledgements

This class builds on the ideas of many others including Prof. Anirudh Sivaraman who taught last year’s version of this class at NYU, Prof. Justine Sherry and Prof. Peeter Steenkiste who teach 15-441/641 at CMU, and Prof. Scott Shenker and Prof. Sylvia Ratnasamy who teach CS168 at Berkeley (and who taught me all I know about networks). All of the good ideas in this class can be traced back to these offerings, all the bad ideas are entirely my responsibility.