Complexity of recursion on trees

Consider the following generic recursion algorithm on trees

```plaintext
function Foo(T)
    if T == NULL then
        return something
    end if
    do_smth1
    for C in T.children do
        call Foo(C) and do_smth2
    end for
    do_smth3
end function
```

Statement. Let tree T consist of n nodes. Then

1. $\text{Foo}(T)$ will invoke $n - 1$ recursive calls;

2. do_smth1 and do_smth3 will be performed n times;

3. do_smth2 will be performed $n - 1$ times.

Proof.

1. For each non-root node C, there will be exactly one recursive call $\text{Foo}(C)$ invoked by the unique parent of C. There are $n - 1$ non-root nodes.

2. do_smth1 and do_smth3 will be called exactly once for each call of Foo. There will be one initial call and, as we have shown, $n - 1$ recursive calls, so the total count is n.

3. For every node C, do_smth2 will be performed in $\text{Foo}(C)$ the number of times equal to the number of children of C. Hence

$$
\text{the number of do_smth2} = \sum_{C \text{ in the tree}} \text{the number of children of } C
$$

Since every non-root node has exactly one parent, every non-root node is counted in the right-hand side of the above equality exactly once. Thus

$$
\sum_{C \text{ in the tree}} \text{the number of children of } C = \text{the number of non-root nodes} = n - 1.
$$