The number of function calls in the fast exponentiation algorithm

Consider the fast exponentiation algorithm

function \(\text{Exp}(a, n) \)
 if \(n == 0 \) then
 return 1
 end if
 if \(n \) is divisible by 2 then
 return \((\text{Exp}(a, n/2))^2 \)
 end if
 return \(a(\text{Exp}(a, (n - 1)/2))^2 \)
end function

Proposition. The number of calls of \(\text{Exp} \) function during the computation of \(\text{Exp}(a, n) \) is equal to \(\lceil \log_2(n + 1) \rceil + 1 \) for every integer \(n \geq 0 \).

Before we dive into the formal proof, let us discuss informally (this can be turned into a rigorous argument as well as was discussed in the lecture) how one could come up with such a formula. We start with an experiment and compute the number of calls for relatively small \(n \)'s.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

We make an observation that we have one 2, two 3’s, four 4’s, eight 5’s and so on. This can be explained by noticing that each number \(k \) in the second row corresponding to number \(n \) in the first row gives rise to two \(k + 1 \)'s corresponding to \(2n \) and \(2n + 1 \). Then the last appearance of \(k \) in the second row will occur after all the appearances of the numbers less than or equal to \(k \), so it will correspond to

\[
 n = 1 + 2 + 4 + \ldots + 2^{k-2} = 2^{k-1} - 1.
\]

Thus, \(\text{Exp}(a, n) \) invokes exactly \(k \) calls of \(\text{Exp} \) if and only if

\[
 2^{k-2} - 1 < n \leq 2^{k-1} - 1.
\]

Adding one to both sides and taking log, we obtain

\[
 k - 2 < \log_2(n + 1) \leq k - 1.
\]

Manipulating with the cailing function, one can now show that

\[
 k = 1 + \lceil \log_2(n + 1) \rceil.
\]

The same formula can be proved formally by induction as follows.

Proof of the proposition. We will prove the statement by induction on \(n \).

Base The base case is \(n = 0 \), there will be only one call. Since \(\log_2 1 + 1 = 1 \), the base case is proved.

Hypothesis Assume that for nonnegative positive integer \(k < n \) the statement is proved.
Step We will prove the statement for \(n \). Consider two cases:

1. \(n \) is odd. In this case the next call will be \(\text{Exp}(a, (n-1)/2) \). Due to the induction hypothesis, it will yield \(\lceil \log_2((n-1)/2 + 1) \rceil + 1 \) calls, so the total number of calls will be

\[
1 + \lceil \log_2((n-1)/2 + 1) \rceil + 1 = \lceil 1 + \log_2((n+1)/2) \rceil + 1 = \lceil \log_2(n+1) \rceil + 1.
\]

2. \(n \) is even. Then inside \(\text{Exp}(a, n) \) the next call will be \(\text{Exp}(a, n/2) \). Due to the induction hypothesis, there will be \(\lceil \log_2(n/2 + 1) \rceil + 1 \) calls for \(\text{Exp}(a, n/2) \), so in total there will be

\[
1 + \lceil \log_2(n/2 + 1) \rceil + 1 = \lceil 1 + \log_2(n/2 + 1) \rceil + 1 = \lceil \log_2(n+2) \rceil + 1
\]
calls.

We will prove that \(\lceil \log_2(n+2) \rceil = \lceil \log_2(n+1) \rceil \), and this will finish the inductive step. Let \(k = \lceil \log_2(n+1) \rceil \), then \(2^{k-1} < n+1 \leq 2^k \). Since \(n+1 \) and \(2^k \) are of different parity, difference between them is at least 1, the latter inequality is actually strict. Thus, \(2^{k-1} < n+1 < 2^k \), so we have \(2^{k-1} < n+2 \leq 2^k \). This implies that \(k = \lceil \log_2(n+2) \rceil \). The proof is finished.

\[\square\]