CSCI-UA.0201

Computer Systems Organization

Bits and Bytes:
Data Presentation

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Some slides adapted and modified from:
• Clark Barrett
• Jinyang Li
• Bryant and O’Hallaron
Bits and Bytes

• Representing information as bits
• How are bits manipulated?
• Type of data:
 – Integers
 – Floating points
 – others
swap(int v[], int k)
{int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
}

Compiler

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

Assembler

Binary machine language program

00000000010100001000000000011000
00000000000100001000000000011000
10001100110010010000000000000000
10001100110010010000000000000000
10011001110010010000000000000000
10011001110010010000000000000000
00000000011000000000000000000000
00000000011000000000000000000000
00000000011000000000000000000000
00000000011000000000000000000000
00000000011000000000000000000000
00000000011000000000000000000000

Our First Steps...
How do we represent data in a computer?

• How do we represent data using electrical signals?
• At the lowest level, a computer is an electronic machine.
• Easy to recognize two conditions:
 – presence of a voltage - we call this state “1”
 – absence of a voltage - we call this state “0”
Binary Representations

0.0V
0.5V
2.8V
3.3V

0
1
0
A Computer is a Binary Digital Machine

- Basic unit of information is the binary digit, or **bit**.
- Values with more than two states require multiple bits.
 - A collection of **two** bits has **four** possible states: 00, 01, 10, 11
 - A collection of **three** bits has **eight** possible states: 000, 001, 010, 011, 100, 101, 110, 111
 - A collection of **n** bits has **2^n** possible states.
George Boole

• (1815-1864)
• English mathematician and philosopher
• Inventor of Boolean Algebra
• Now we can use things like: AND, OR, NOT, XOR, XNOR, NAND, NOR,

Source: http://history-computer.com/ModernComputer/thinkers/Boole.html
Claude Shannon

- (1916-2001)
- American mathematician and electronic engineer
- His work is the foundation for using switches (mainly transistors now), and hence binary numbers, to implement Boolean function.

Source: http://history-computer.com/ModernComputer/thinkers/Shannon.html
So, we use transistors to implement logic gates. Logic gates manipulate binary numbers to implement Boolean functions. Boolean functions solve problems.

.... Simply Speaking ... 😊
Encoding Byte Values

- **Byte = 8 bits**
 - Binary 00000000_2 to 11111111_2
 - Decimal: 0_{10} to 255_{10}
 - Hexadecimal 00_{16} to FF_{16}
 - Base 16 number representation
 - Every 4 bits \rightarrow 1 hexadecimal digit
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B$_{16}$ in C language as
 - `0xFA1D37B`
 - `0xFA1D37B`
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

• How are bytes within a multi-byte word ordered in memory?

• Conventions
 – **Big Endian**: Sun, PPC, Internet
 • Most significant byte has lowest address
 – **Little Endian**: x86
 • Most significant byte has highest address
Byte Ordering Example

- **Big Endian**
 - Most significant byte has lowest address
- **Little Endian**
 - Most significant byte has highest address
- **Example**
 - Variable x has 4-byte representation **0x01234567**
 - Address given by &x is 0x100
Reading Byte-Reversed Listings

• Disassembly
 – given the binary file, get the assembly

• Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmp $0x0,0x28 (%ebx)</td>
</tr>
</tbody>
</table>

• Deciphering Numbers
 – Value: 0x12ab
 – Pad to 32 bits (int is 4 bytes): 0x000012ab
 – Split into bytes: 00 00 12 ab
 – Reverse (little endian): ab 12 00 00
Examining Data Representations

- Code to print Byte Representation of data

```c
void show_bytes(unsigned char * start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t%2x\n", start+i, start[i]);
    printf("\n");
}
```

printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((unsigned char *) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11fffffcb8 0x6d
0x11fffffcb9 0x3b
0x11fffffcb9 0x00
0x11fffffcb9 0x00
```

Note: 15213 in decimal is 3B6D in hexadecimal
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character '0' has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated

- **Byte ordering not an issue**

```
char S[6] = "18243";
```
How to Manipulate Bits?
Boolean Algebra

- Applying Boolean operations, such as XOR, NAND, AND, ..., to bits to generate new bit values.

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A \mid B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Not
- \(\neg A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>~A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A \oplus B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Boolean Algebra

- Applying Boolean operations, such as XOR, NAND, AND, ..., to bits to generate new bit values.

<table>
<thead>
<tr>
<th>NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>The reverse of AND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The reverse of OR</td>
</tr>
</tbody>
</table>

| A | B | A|B |
|----|----|----|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

<table>
<thead>
<tr>
<th>Exclusive-NOR (Xor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The reverse of XOR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A^B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

• Applied to Digital Systems by Claude Shannon
 – 1937 MIT Master’s Thesis
 – Reason about networks of relay switches
 • Encode closed switch as 1, open switch as 0

 Transistor
General Boolean Algebras

- Operate on Bit Vectors (e.g. an integer is a bit vector of 4 bytes = 32 bits)
 - Operations applied bitwise

\[
\begin{array}{c}
01101001 \\
\& 01010101 \\
\hline
01000001
\end{array}
\quad
\begin{array}{c}
01101001 \\
| 01010101 \\
\hline
01111101
\end{array}
\quad
\begin{array}{c}
01101001 \\
^ 01010101 \\
\hline
00111100
\end{array}
\quad
\begin{array}{c}
01010101 \\
\sim 01010101 \\
\hline
10101010
\end{array}
\]
Bit-Level Operations in C

• *Operations* `&`, `|`, `~`, `^` *Available in C*
 – *Apply to any “integral” data type*
 • long, int, short, char, unsigned

• **Examples (Char data type)**
 – `~0x41 = 0xBE`
 • `~01000001_2 = 10111110_2`
 – `~0x00 = 0xFF`
 • `~00000000_2 = 11111111_2`
 – `0x69 & 0x55 = 0x41`
 • `01101001_2 & 01010101_2 = 01000001_2`
 – `0x69 | 0x55 = 0x7D`
 • `01101001_2 | 01010101_2 = 01111101_2`
Contrast: Logic Operations in C

• Contrast to Logical Operators
 &&, ||, !
 • View 0 as “False”
 • Anything nonzero as “True”
 • Always return 0 or 1

• Examples
 – !0x41 = 0x00
 – !0x00 = 0x01
 – !!0x41 = 0x01
 – 0x69 && 0x55 = 0x01
 – 0x69 || 0x55 = 0x01
 – p && *p (avoids null pointer access)
Boolean in C

• Did not exist in standard C89/90
• It was introduced in C99 standard
• You may need to use the following switch with gcc:

 gcc -std=c99 ...

#include <stdbool.h>

bool x;

x = false; \leftarrow lower case

x = true;
Shift Operations

- **Left Shift:** \(x << y \)
 - Shift \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift:** \(x >> y \)
 - Shift \(x \) right \(y \) positions
 - Throw away extra bits on right
 - **type 1:** Logical shift
 - Fill with 0’s on left
 - **type 2:** Arithmetic shift (covered later)
 - Replicate most significant bit on right

- **Undefined Behavior**
 - Shift amount < 0 or ≥ size of \(x \)

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(\text{01100010})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< \ 3)</td>
<td>(\text{00010000})</td>
</tr>
<tr>
<td>Log. (>> \ 2)</td>
<td>(\text{00011000})</td>
</tr>
<tr>
<td>Arith. (>> \ 2)</td>
<td>(\text{00011000})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(\text{10100010})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< \ 3)</td>
<td>(\text{00010000})</td>
</tr>
<tr>
<td>Log. (>> \ 2)</td>
<td>(\text{00101000})</td>
</tr>
<tr>
<td>Arith. (>> \ 2)</td>
<td>(\text{11101000})</td>
</tr>
</tbody>
</table>
How to present Integers in binary?
Two Type of Integers

- **Unsigned**
 - positive numbers and 0
- **Signed numbers**
 - negative numbers as well as positive numbers and 0
Unsigned Integers

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

\begin{align*}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
\downarrow & & & & & & & & \\
128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\
\downarrow & & & & & & & & \\
187
\end{align*}
Unsigned Integers

- An \(n \)-bit unsigned integer represents \(2^n \) values: from 0 to \(2^n - 1 \).

<table>
<thead>
<tr>
<th></th>
<th>(2^2)</th>
<th>(2^1)</th>
<th>(2^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Unsigned Binary Arithmetic

- Base-2 addition - just like base-10
 - add from right to left, propagating carry

\[
\begin{array}{c}
10010 \\
+ 1001 \\
\hline
11011
\end{array}
\quad
\begin{array}{c}
10010 \\
+ 1011 \\
\hline
11101
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 1 \\
\hline
10000
\end{array}
\]

\[
10111 \\
+ 111
\]
What About Negative Numbers?

People have tried several options:

<table>
<thead>
<tr>
<th>Sign Magnitude:</th>
<th>One's Complement</th>
<th>Two's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
</tr>
<tr>
<td>100 = -0</td>
<td>100 = -3</td>
<td>100 = -4</td>
</tr>
<tr>
<td>101 = -1</td>
<td>101 = -2</td>
<td>101 = -3</td>
</tr>
<tr>
<td>110 = -2</td>
<td>110 = -1</td>
<td>110 = -2</td>
</tr>
<tr>
<td>111 = -3</td>
<td>111 = -0</td>
<td>111 = -1</td>
</tr>
</tbody>
</table>

• Issues: balance, number of zeros, ease of operations
• Which one is best? Why?
Signed Integers

• With n bits, we have 2^n distinct values.
 – assign about half to positive integers and about half to negative

• Positive integers
 – just like unsigned: zero in most significant (MS) bit
 $00101 = 5$

• Negative integers
 – In two’s complement form

In general: a 0 at the MS bit indicates positive and a 1 indicates negative.
Two’s Complement

- Two’s complement representation developed to make circuits easy for arithmetic.
 - for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with “normal” addition, ignoring carry out.

\[
\begin{array}{c}
00101 & (5) & 01001 & (9) \\
+ 11011 & (-5) & + 10111 & (-9) \\
00000 & (0) & 00000 & (0)
\end{array}
\]
Two's Complement Signed Integers

- MS bit is sign bit.
- Range of an n-bit number: -2^{n-1} through $2^{n-1} - 1$.
 - The most negative number (-2^{n-1}) has no positive counterpart.

<table>
<thead>
<tr>
<th>-2³</th>
<th>2²</th>
<th>2¹</th>
<th>2⁰</th>
<th></th>
<th>-2³</th>
<th>2²</th>
<th>2¹</th>
<th>2⁰</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Converting Binary (2’s C) to Decimal

1. If MS bit is one (i.e. number is negative), take two’s complement to get a positive number.

2. Get the decimal as if the number is unsigned (using power of 2s).

3. If original number was negative, add a minus sign.

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>
Examples

\[X = 00100111_{\text{two}} \]
\[= 2^5 + 2^2 + 2^1 + 2^0 = 32 + 4 + 2 + 1 \]
\[= 39_{\text{ten}} \]

\[X = 11100110_{\text{two}} \]
\[-X = 00011010 \]
\[= 2^4 + 2^3 + 2^1 = 16 + 8 + 2 \]
\[= 26_{\text{ten}} \]
\[X = -26_{\text{ten}} \]
Shift Operations

- **Left Shift:** $x << y$
 - Shift x left by y positions
 - Throw away extra bits on left
 - Fill with 0's on right

- **Right Shift:** $x >> y$
 - Shift x right y positions
 - Throw away extra bits on right
 - type 1: **Logical shift**
 - Fill with 0's on left
 - type 2: **Arithmetic shift** (covered later)
 - Replicate most significant bit on right

- **Undefined Behavior**
 - Shift amount < 0 or \geq size of x

Examples

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<< 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. $>> 2$</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. $>> 2$</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<< 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. $>> 2$</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. $>> 2$</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Numeric Ranges

Example: Assume 16-bit numbers

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned Max</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Signed Max</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Signed Min</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Unsig. Max</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Signed Max</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Signed Min</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - INT_MAX
 - LONG_MAX
 - INT_MIN
 - UINT_MIN
 - ...

What happens if you change the type of a variable (aka type casting)?
Signed vs. Unsigned in C

• Constants
 – By default, signed integers
 – Unsigned with “U” as suffix
 0U, 4294967259U

• Casting
 – **Explicit casting** between signed & unsigned

    ```
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```

 – **Implicit casting** also occurs via assignments and procedure calls
    ```
    tx = ux;
    uy = ty;
    ```
General Rule for Casting: signed <-> unsigned

Follow these two steps:
1. Keep the bit presentation
2. Re-interpret

Effect:
• Numerical value may change.
• Bit pattern stays the same.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Casting Surprises

• Expression Evaluation
 – If there is a mix of unsigned and signed in single expression,
 signed values implicitly cast to unsigned
 – Including comparison operations <, >, ==, <=, >=

If there is an expression that has many types, the compiler follows these rules.
Example

#include <stdio.h>

main() {

 int i = -7;
 unsigned j = 5;

 if(i > j)
 printf("Surprise!\n");

}
Expanding & Truncating a variable
Expanding

- Convert w-bit signed integer to $w+k$-bit with same value
- Convert unsigned: pad k 0 bits in front
- Convert signed: make k copies of sign bit
Sign Extension Example

```c
short int x = 15213;
int    ix = (int) x;
short int y = -15213;
int    iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Truncating

- Example: from int to short (i.e. from 32-bit to 16-bit)
- High-order bits are truncated
- Value is altered → must reinterpret
- This non-intuitive behavior can lead to buggy code! → So don’t do it!
Addition, negation, multiplication, and shifting
Negation: Complement & Increment

• The complement of x satisfies
 \[\text{Two’s Comp}(x) + x = 0 \]
 \[\text{Two’s Comp}(x) = \sim x + 1 \]

• Proof sketch
 – Observation: $\sim x + x = 1111...111 = -1$
 \[\Rightarrow \sim x + x + 1 = 0 \]
 \[\Rightarrow (\sim x + 1) + x = 0 \]
 \[\Rightarrow \text{Two’s Comp}(x) + x = 0 \]

<table>
<thead>
<tr>
<th>x</th>
<th>100111101</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sim x$</td>
<td>01100010</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: w bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v} \\
\hline \\
\text{u} + \text{v}
\end{array}
\]

True Sum: $w+1$ bits

Discard Carry: w bits

UAdd\(_w\)(u, v)

Hardware Rules for addition/subtraction

- The hardware must work with two operands of the same length.
- The hardware produces a result of the same length as the operands.
- The hardware does not differentiate between signed and unsigned.
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{True Sum: } w+1 \text{ bits} \\
\hline
u + v \\
\hline
\text{TAdd}_w(u, v)
\end{array}
\]

Discard Carry: \(w \) bits

\(u \)

\(v \)

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\(\text{TAdd}_w(u, v) \)

\[
\begin{array}{c}
\text{Discard Carry: } w \text{ bits} \\
\hline
\text{TAdd}_w(u, v)
\end{array}
\]

\[
\begin{array}{c}
\text{Operands: } w \text{ bits} \\
\hline
\text{True Sum: } w+1 \text{ bits} \\
\hline
\text{Discard Carry: } w \text{ bits}
\end{array}
\]

- If \(\text{sum} \geq 2^{w-1} \), becomes negative (positive overflow)
- If \(\text{sum} < -2^{w-1} \), becomes positive (negative overflow)
Multiplication

- Exact Product of w-bit numbers x, y
 - Either signed or unsigned

- Ranges
 - Unsigned: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Two’s complement min: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Two’s complement max: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
Power-of-2 Multiply with Shift

• Operation
 – \(u \ll k \) gives \(u \times 2^k \)
 – Both signed and unsigned

• Examples
 – \(u \ll 3 = u \times 8 \)
 – \((u \ll 5) - (u \ll 3) = u \times 24 \)
 – Most machines shift and add faster than multiply
 • Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t = x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

- **Quotient of Unsigned by Power of 2**

 \[u \gg k \text{ gives } \lfloor u / 2^k \rfloor \]

Examples:

<table>
<thead>
<tr>
<th></th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

<table>
<thead>
<tr>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td># Logical shift</td>
</tr>
<tr>
<td>return x >> 3;</td>
</tr>
</tbody>
</table>

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as `>>>`
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - \(x >> k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift

Examples

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y >> 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y >> 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y >> 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Floating Points

Some slides and information about FP are adopted from Prof. Michael Overton book:

Numerical Computing with IEEE Floating Point Arithmetic
Turing Award 1989 to William Kahan for design of the IEEE Floating Point Standards 754 (binary) and 854 (decimal)
Background: Fractional binary numbers

- What is 1011.101_2?
Background: Fractional Binary Numbers

- **Value:**
 \[
 \sum_{k=-j}^{i} b_k \times 2^k
 \]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
</tr>
</tbody>
</table>
Why not fractional binary numbers?

• Not efficient
 - $3 \times 2^{100} \rightarrow 1010000000 \ldots \ 0$

 - Given a finite length (e.g. 32-bits), cannot represent very large nor very small numbers ($\epsilon \rightarrow 0$)
IEEE Floating Point

• IEEE Standard 754
 – Supported by all major CPUs
 – The IEEE standards committee consisted mostly of hardware people, plus a few academics led by W. Kahan at Berkeley.

• Main goals:
 – Consistent representation of floating point numbers by all machines.
 – Correctly rounded floating point operations.
 – Consistent treatment of exceptional situations such as division by zero.
Floating Point Representation

• Numerical Form:
 \((-1)^s M \times 2^E\)
 – Sign bit \(s\) determines whether number is negative or positive
 – Significand \(M\) a fractional value
 – Exponent \(E\) weights value by power of two

• Encoding
 – MSB \(s\) is sign bit \(s\)
 – exp field encodes \(E\)
 – frac field encodes \(M\)
Precisions

- **Single precision: 32 bits**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8-bits</td>
<td>23-bits</td>
</tr>
</tbody>
</table>

- **Double precision: 64 bits**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11-bits</td>
<td>52-bits</td>
</tr>
</tbody>
</table>

- **Extended precision: 80 bits (Intel only)**

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15-bits</td>
<td>63 or 64-bits</td>
</tr>
</tbody>
</table>
Based on \(\exp \) we have 3 encoding schemes

- \(\exp \neq 0.0 \) or \(11...1 \) \(\rightarrow \) normalized encoding
- \(\exp = 0...000 \) \(\rightarrow \) denormalized encoding
- \(\exp = 1111...1 \) \(\rightarrow \) special value encoding
 - \(\text{frac} = 000...0 \)
 - \(\text{frac} = \text{something else} \)
1. Normalized Encoding

• **Condition:** \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \) referred to as Bias

• **Exponent is:** \(E = \text{Exp} - (2^{k-1} - 1) \), \(k \) is the # of exponent bits
 - Single precision: \(E = \text{exp} - 127 \)
 - Double precision: \(E = \text{exp} - 1023 \)

• **Significand is:** \(M = 1.xxx\ldots x_2 \)
 - Range(\(M \)) = \([1.0, 2.0-\epsilon]\)
 - Get extra leading bit for free

Range(\(E \)) = \([-126, 127]\)
Range(\(E \)) = \([-1022, 1023]\)
Normalized Encoding Example

• **Value:** Float $F = 15213.0$;

 $15213_{10} = 11101101101101_2$

 $= 1.1101101101101_2 \times 2^{13}$

• **Significand**

 $M = \begin{array}{c} 1.1101101101101 \\ frac = \begin{array}{c} 1101101101101000000000000_2 \end{array} \end{array}$

• **Exponent**

 $E = \text{exp} - \text{Bias} = \text{exp} - 127 = 13$

 $\Rightarrow \text{exp} = 140 = 10001100_2$

• **Result:**

 $$0\begin{array}{c} 10001100 \\ \text{exp} \end{array} \begin{array}{c} 110110110110110000000000000 \end{array} \text{frac}$$
2. Denormalized Encoding
(called subnormal in revised standard 854)

- **Condition:** exp = 000...0

- **Exponent value:** \(E = 1 - \text{Bias} \) (instead of \(E = 0 - \text{Bias} \))
- **Significand is:** \(M = 0.xxx...x_2 \) (instead of \(M=1.xxx_2 \))

- **Cases**
 - \(\text{exp} = 000...0, \frac{\text{frac}}{} = 000...0 \)
 - Represents zero
 - Note distinct values: +0 and -0
 - \(\text{exp} = 000...0, \frac{\text{frac}}{} \neq 000...0 \)
 - Numbers very close to 0.0
3. Special Values Encoding

• **Condition**: \(\exp = 111\ldots1 \)

• **Case**: \(\exp = 111\ldots1, \frac{\text{frac}}{} = 000\ldots0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -\infty \)

• **Case**: \(\exp = 111\ldots1, \frac{\text{frac}}{} \neq 000\ldots0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating Point Encodings
Floating Point in C

- **C:**
 - float single precision
 - double double precision

- **Conversions/Casting**
 - Casting between int, float, and double changes bit representation, examples:
 - double/float → int
 - Truncates fractional part
 - Not defined when out of range or NaN
 - int → double
 - Exact conversion
Conclusions

• Everything is stored in memory as 1s and 0s
• The binary presentation by itself does not carry a meaning, it depends on the interpretation.
• IEEE Floating Point has clear mathematical properties
 – Represents numbers as: \((-1)^S \times M \times 2^E\)