On Code Literacy

“Computers and networks finally offer us the ability to write. And we do write with them on our websites, blogs, and social networks. But the underlying capability of the computer era is actually programming—which almost none of us knows how to do. We simply use the programs that have been made for us, and enter our text in the appropriate box on the screen.”

—Douglas Rushkoff
Algorithm
Algorithm

A set of rules
An operation
A procedure
A process
A recipe
Precise step-by-step instructions
Computing in Context

Hardware
Operating system
Software
Computer Code
Jacquard Loom, 1801
Ada Lovelace (1815–1852)
What is a program?
What is a program?

A sequence of instructions for a computer to follow

May be mathematical or symbolic

Basics include:
• input
• output
• math
• conditional execution
• repetition
Low-level programming languages are closer to “machine language”

They are difficult (though not impossible) for humans to read and, as such, are more error-prone
Introduction to Computer Programming Class 1
CSCI-UA 2 Introduction and Overview

8B542408 83FA0077 06B80000 0000C383
FA027706 B8010000 00C353BB 01000000
B9010000 008D0419 83FA0376 078BD98B
C84AEBF1 5BC3
Programming Languages

High-Level

High-level programming languages are closer to real syntax.

High-level languages are abstracted and therefore require interpretation.

We’ll be working with a high-level language.
print('Hello, world!')
Natural Languages and High-Level Programming Languages

Similarities
Syntax

Natural language syntax is the arrangement of words and phrases to create well-formed sentences.

Programming language syntax is the arrangement of words and characters to correctly structure programs.
Grammar

Natural language grammar refers to the whole system and structure of a language, such as sentences and paragraphs.

Programming languages also implement structure, such as blocks of code and statements within the blocks.
Parts of Speech

Natural languages incorporate different parts of speech, like nouns, verbs, and adjectives.

Programming languages also have parts of speech called “data types” that include different kinds of numbers and characters.
Semantics

In natural languages, semantics refers to the meaning of a word. “Cat” brings something specific to mind.

In programming languages, certain symbols, like + and =, have specific meaning as well as some key words.
Key Words

A primary difference between natural and programming languages

Python keywords:

False, None, True, and, as, assert, break, class, continue, def, del, elif, else, except, finally, for, from, global, if, import, in, is, lambda, nonlocal, not, or, pass, raise, return, try, while, with, yield
Pseudocode

Determining the logic of a program without regard for the language it will be written in

Best written out on paper or in a plain text editor

Pseudocode describes the steps of an algorithmic process
Introduction to Computer Programming
CSCI-UA 2
From Natural Language to Machine Language by Way of Python
Introduction to Computer Programming
CSCI-UA 2

Class 1
Introduction and Overview
type()
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>a == b</th>
<th>a != b</th>
<th>a and b</th>
<th>a or b</th>
<th>not a</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Introduction to Computer Programming
CSCI-UA 2

Class 1
Introduction and Overview
Course Content
Introduction to Computer Programming

Class 1
Introduction and Overview

• Python Basics
• Data Types and Variables
• Control Structures
• Repetition Structures
• Functions and Modules
• Strings
• Lists
• File Input and Output
• Dictionaries
• Object-oriented programming
Introductions

Me

Joshua Clayton
jclayton@cs.nyu.edu
Room 420, Warren Weaver Hall
Office hours
• Monday, 2:30–4:00 p.m.
• Wednesday, 10:30 a.m.–12:00 p.m.

cs.nyu.edu/cs/faculty/clayton
Syllabus
Prerequisites

No prior experience assumed
3 years of high school math required
For students considering a Computer Science major
For students considering or pursuing a Computer Science minor
For students interested in programming
C or better is required to take further CS classes as a major
Class Format

The course consists of three primary components:

• Online learning modules
• In-class discussion and application of principles
• In-class workshops
Syllabus

Quizzes

There will be ten online quizzes that go along with each online learning module.

Questions are multiple-choice.

Quizzes are delivered via NYU Classes and can be attempted up to five times.

Your most recent score will be the one recorded.

Quizzes must be completed before class on the day in which they are due.

Quizzes are worth 5% of your grade.
Introduction to Computer Programming
CSCI-UA 2

Syllabus

Quizzes
Syllabus
Assignments

There will be ten assignments over the course of the semester.

Details of each assignment will be posted on the class website.

All assignments are to be submitted via NYU Classes.

Do your best to turn work in on time. 10% will be deducted for each class period after the deadline.

No assignments will be accepted after three classes or after the final exam.
Syllabus

Attendance

You are expected to come to all classes and arrive on time.

Please let me know in advance if you will be out for any reason.

Please let me know if you miss class due to illness.

You are encouraged to bring a computer to class

If you ever feel overwhelmed or need extra help, I will be available to you.
Syllabus

Grading Rubric

Assignments 20%

Quizzes 5%

Midterm Exam 1 20%

Midterm Exam 2 20%

Final exam 35%
For Next Class

- Review class website
- Complete learning module 1
- Take quiz