CSCI-GA.3033-004

Graphics Processing Units (GPUs): Architecture and Programming

CUDA

Advanced Techniques 2

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com
Alignment
Memory Alignment

- Memory access on the GPU works much better if the data items are aligned as we saw before.
- Hence, allocating 2D (or 3D) arrays so that every row starts at a 64- (or 128-) byte boundary address will improve performance.
- Difficult to do for a programmer!
Pitch

Columns

Pitch

Rows

Padding
2D Arrays

- CUDA offers special versions of:
 - Memory allocation of 2D arrays so that every row is padded (if necessary). The function determines the best pitch and returns it to the program. The function name is `cudaMallocPitch()`
 - Memory copy operations that take into account the pitch that was chosen by the memory allocation operation. The function name is `cudaMemcpy2D()`
cudaMallocPitch(void** devPtr,
 size_t* pitch,
 size_t widthInBytes,
 size_t height)

• This allocates at least width (in bytes) X height array.
• The value returned in pitch is the width in bytes of the allocation.
• The above function determines the best pitch and returns it to the program.
• It is strongly recommended to use this function for allocating 2D (and 3D) arrays.
 (also take a look at cudaMalloc3D())
cudaError_t cudaMemcpy2D (void * dst,
 size_t dpitch,
 const void * src,
 size_t spitch,
 size_t width,
 size_t height,
 enum cudaMemcpyKind kind)

- **dst** - Destination memory address
- **dpitch** - Pitch of destination memory
- **src** - Source memory address
- **spitch** - Pitch of source memory
- **width** - Width of matrix transfer (in bytes)
- **height** - Height of matrix transfer (rows)
- **kind** - Type of transfer

The widths in memory in bytes including any padding added to the end of each row.
int main(int argc, char * argv[]) {
 float * A, *dA;
 size_t pitch;

 A = (float *)malloc(sizeof(float)*N*N);
 cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);

 // copy memory from unpadded array A of 760 by 760 dimensions
 // to more efficient dimensions on the device
 cudaMemcpy2D(dA,pitch,A,sizeof(float)*N,sizeof(float)*N,N, cudaMemcpyHostToDevice);

 ... cudaMemcpyHostToDevice;

}
Example: Accessing

```c
__global__ void MyKernel(float* devPtr,
                        size_t pitch,
                        int width, int height) {

  for (int r = 0; r < height; ++r) {
    float* row = (float*)((char*)devPtr + r * pitch);
    for (int c = 0; c < width; ++c) {
      float element = row[c];
    }
  }
}
```
So..

Pitch is a good technique to speedup memory access
• There are two drawbacks that you have to live with:
 • Some wasted space
 • A bit more complicated elements access
Multi-GPU System
Summit: #1 in Top 500 list (June 2018)

IBM POWER9, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband
Flavors

- Multiple GPUs in the same node (e.g. PC)
- Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!
Source: “The CUDA Handbook” by Nicholas Wilt. Copyright (c) by Pearson Education Inc.
Flavors

4-GPU-PCIe

4-GPU-NVLink

Source: NVIDIA
Why Multi-GPU Solutions

• Scaling-up performance
• Another level of parallelism
• Power
• Reliability
/ Run independent kernel on each CUDA device
int numDevs= 0;
cudaGetDeviceCount(&numDevs);
...
for (int d = 0; d < numDevs; d++) {
 cudaMemcpy(d);
 kernel<<<blocks, threads>>>(args);
}
CUDA Support

- `cudaGetDeviceCount(int * count)`
 - Returns in *count the number of devices

- `cudaGetDevice(int * device)`
 - Returns in *device the device on which the active host thread executes the device code.
CUDA Support

- `cudaSetDevice(devID)`
 - Device selection within the code by specifying the identifier and making CUDA kernels run on the selected GPU.

```c
size_t size = 1024 * sizeof(float);
cudaSetDevice(0); // Set device 0 as current
float* p0;
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
float* p1;
cudaMalloc(&p1, size); // Allocate memory on device 1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
```
Who Controls the GPU?

• Single CPU thread
• Multiple CPU threads belonging to the same process
• Different processes
Peer-to-Peer Access

Source: NVIDIA
CUDA Support: Peer to peer memory Access

• Peer-to-Peer Memory Access

\texttt{cudaDeviceCanAccessPeer (int* can, int device_x, int device_y)}

• Can device_x access the memory of device_y? if yes, can = 1
• This is one-way
CUDA Support:
Peer to peer memory Access

- Peer-to-Peer Memory Access
 - cudaDeviceEnablePeerAccess(peer_device, 0)

```c
cudaSetDevice(0); // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0); // Enable peer-to-peer access with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);
```
What we want to do ...
cudaError_t cudaDeviceEnablePeerAccess (int peerDevice, unsigned int flags)

Access granted by this call is **unidirectional** (i.e. current device can access peer device)

cudaError_t cudaDeviceDisablePeerAccess (int peerDevice)
CUDA Support
Peer to peer memory Copy

- Using cudaMemcpyPeer()

```c
cudaSetDevice(0);          // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);     // Allocate memory on device 0
cudaSetDevice(1);          // Set device 1 as current
float* p1;
cudaMalloc(&p1, size);     // Allocate memory on device 1
cudaSetDevice(0);          // Set device 0 as current
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1);          // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
```

- If cudaDeviceEnablePeerAccess() is enabled, host not involved, so faster copy.
- It is asynchronous from host perspective.
cudaMemcpyPeer (void * dst,
 int dstDevice,
 const void * src,
 int srcDevice,
 size_t count)

Important: If GPU supports Unified Virtual Address, then no need to the above function. (We will see shortly)
The Evolution of CPU-GPU Memory Operations
The Evolution of CPU-GPU Memory Operations

Milestones

- Traditional `cudaMemcpy()`
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up)

We already saw this!
The Evolution of CPU-GPU Memory Operations

Milestones

- Traditional cudaMemcpy()
- Zero-copy
- Unified Virtual Address (CUDA 4.0 and up)
- Unified Memory (CUDA 6.0 and up)
Unified Virtual Address Space (UVA)

- From CUDA 4.0
- puts all CUDA execution, host and GPUs, in the same address space
- Requires Fermi-class GPU and above
 - computer capability 2.0 or higher
- Requires 64-bit application
- Call `cudaGetDeviceProperties()` for all participating devices and check `unifiedAddressing` flag
Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces

UVA: Single Address Space

© NVIDIA Corporation 2011
Easier Memory Access: UVA Zero-Copy

- UVA provides a single virtual memory address space for all memory in the system, and enables pointers to be accessed from GPU code no matter where in the system they reside.

- Pointers returned by cudaHostAlloc() can be used directly from within kernels running on UVA enabled devices – Data cache in L2 of target device.
Easier Memory Copy: UVA Memory Copy

• Between host and multiple devices:
cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• Between two devices:
cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

 • cudaMemcpy() knows that our buffers are on different devices
 • (UVA), will do a P2P copy
 • Note that this will transparently fall back to a normal copy through the host if P2P is not available
The Evolution of CPU-GPU Memory Operations

Milestones

• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• **Unified Memory (CUDA 6.0 and up)**

Source of the next few slides:
Unified Memory

Source: NVIDIA blogs: https://devblogs.nvidia.com/parallelforkall
Unified Memory

• Primitive version from Kepler architecture (CC 3.0 and up)
• Creates a pool of managed memory that is shared between the CPU and GPU.
• Managed memory is accessible to CPU and GPU with single pointers.
• Under the hood: data (granularity = pages) automatically migrates from CPU to GPU and among GPUs.
 – Pascal GPU architecture is the first with hardware support for virtual memory page faulting and migration.
Unified Memory

cudaError_t cudaMallocManaged(void** ptr, size_t size)

• ptr can be used by any GPU and CPU in the system.
• Pascal GPU:
 – Pages may not be created until they are accessed by the GPU or the CPU.
 – Pages automatically migrate to the device (or host) that access them.
• Pre-PASCAL (i.e. Kepler and Maxwell):
 – With single GPU, data will be allocated on the GPU device that is active when the call is made.
 – On multi-GPU systems, if some of the GPUs have peer-to-peer access disabled, the memory will be allocated so it is initially resident on the CPU.
Isn’t it like UVA?

• Unified memory depends on UVA.
• UVA does NOT move data automatically between CPU and GPU.
• Unified memory gives higher performance than UVA.
Advantages of Unified Memory

• Ease of programming
• Data is migrated on demand.
 – offer the performance of local data on the GPU
 – while providing the ease of use of globally shared data
• Very efficient with complex data structures (e.g. linked lists, structures with pointers, …).

Note: The physical location of data is invisible to the program and may be changed at any time.
Disadvantages of Unified Memory

- Carefully tuned CUDA program that uses streams to efficiently overlap execution with data transfers may perform better than a CUDA program that only uses Unified Memory.
How to allocated managed memory?

- **Option 1**: `cudaMallocManaged()` routine, which is semantically similar to `cudaMalloc()`

- **Option 2**: defining a global `__managed__` variable, which is semantically similar to a `__device__` variable
int main() {

 int *ret;

 cudaMallocManaged(&ret, 1000 * sizeof(int));

 AplusB<<<1, 1000 >>>(ret, 10, 100);
 cudaDeviceSynchronize();

 for(int i=0; i<1000; i++)
 printf("%d: A+B = %d\n", i, ret[i]);

 cudaFree(ret);
 return 0;
}
```c
__managed__

__device__ __managed__ int ret[1000];

__global__ void AplusB(int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {

    AplusB<<< 1, 1000 >>>(10, 100);
    cudaDeviceSynchronize();

    for(int i=0; i<1000; i++)
        printf("%d: A+B = %d\n", i, ret[i]);

    return 0;
}
```
Final Notes About Unified Memory

• Coherence is ahead of performance in runtime implementation. Data has to be coherent across CPUs and GPUs in the system.

• Page faulting is implemented in systems with compute capability 6.x and up \textcolor{red}{\rightarrow} cudaMallocManaged will not run out of memory as long as there is enough system memory available for the allocation.

• Before that, all managed data must move to the GPU before kernel launch (automatically of course) \textcolor{red}{\rightarrow} Devices of compute capability lower than 6.x cannot allocate more managed memory than the physical size of GPU memory
Dynamic Parallelism
The Usual case

• Data travels back and forth between the CPU and GPU many times.
• Reason: because of the inability of the GPU to create more work on itself depending on the data.
With Dynamic Parallelism:

- GPU can generate work on itself without involvement of CPU.
- Permits Dynamic Run time decisions.
- Kernels can start new kernels.
- Streams can spawn new streams.

CUDA 5.0 and later on devices of Compute Capability 3.5 or higher.
A kernel can call another kernel that calls another kernel up to 24 nested ...
Subject to the availability of resources.
When do we need that?

- Nested for-loop for example
- The need for adaptive grids

Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/
Important

• As in the host, device kernel launch is asynchronous.

• Successful execution of a kernel launch means that the kernel is queued;
 – it may begin executing immediately,
 – or it may execute later when resources become available.

• Note that every thread that encounters a kernel launch executes it. So be careful!

• Child grids always complete before the parent grids that launch them, even if there is no explicit synchronization.
Important

- The CUDA Device Runtime guarantees that parent and child grids have a fully consistent view of global memory when the child starts and ends.

Important

• By default, grids launched within a thread block are executed sequentially.
• This happens even if grids are launched by different threads within the block.
• To deal with this drawback → streams
• Streams created on the host cannot be used on the device.
• Streams created in a block can be used by all threads in that block.

cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);
If the parent kernel needs results computed by the child kernel to do its own work, it must ensure that the child grid has finished execution before continuing:

- by explicitly synchronizing using `cudaDeviceSynchronize(void)`.
- This function waits for completion of all grids previously launched by the thread block from which it has been called.
Example

```c
void threadBlockDeviceSynchronize(void) {
    __syncthreads();
    if(threadIdx.x == 0) {
        cudaDeviceSynchronize();
    }
    __syncthreads();
}
```

To ensure all launches have been made.
What do we gain?

• Reduction in trips to CPU
• Recursion
• More freedom where data generated by the kernel decides how to partition the data for lower-level of the hierarchy.
How to Compile and Link?

```
nvcc -arch=sm_35 -rdc=true myprog.cu -lcudadevrt
```

generate relocatable device code, required for later linking
Hyper-Q
Till Fermi

- Only one work queue
- Even though Fermi allows 16 concurrent kernels.
- GPU resources not fully utilized
Fermi already supported 16 way concurrency of kernel launches from separate streams. Pending work is bottlenecked on 1 work queue. GPU’s computational resources not being utilized fully.
With Hyper-Q

• Starting with Kepler
• We can have connection from multiple CUDA streams, Message Passing Interface (MPI) processes, or multiple threads of the same process.
 – 32 concurrent work queues, can receive work from 32 process cores at the same time.
 – 3X Performance increase on Fermi
With Hyper-Q
Conclusions

• There are many performance enhancement techniques in our arsenal:
 – Alignment
 – Streams
 – Asynchronous execution
 – Dynamic Parallelism
 – Multi-GPU