FLP and RSMs
The Consensus Trilogy - Part 1
FLP and RSMs
The Consensus Trilogy - Part 1
Announcements
Announcements

• No Lab 1. We will just skip ahead to Lab 2 in 2 weeks.
Announcements

• No Lab 1. We will just skip ahead to Lab 2 in 2 weeks.

• Laziness.
Announcements

• No Lab 1. We will just skip ahead to Lab 2 in 2 weeks.
 • Laziness.
 • More time for you to spend on Lab 2 which looks more complex.
Announcements

• No Lab 1. We will just skip ahead to Lab 2 in 2 weeks.

• Laziness.

• More time for you to spend on Lab 2 which looks more complex.

• More time for final project.
Announcements

- No Lab 1. We will just skip ahead to Lab 2 in 2 weeks.

 - Laziness.

 - More time for you to spend on Lab 2 which looks more complex.

 - More time for final project.

- Some people still have not filled out the form for associating Github accounts.
Announcements

• No Lab 1. We will just skip ahead to Lab 2 in 2 weeks.
 • Laziness.
 • More time for you to spend on Lab 2 which looks more complex.
 • More time for final project.
• Some people still have not filled out the form for associating Github accounts.
 • Do it now!
Consensus and FLP
What is Consensus?
Consensus: Setting

• Some set of nodes.
Consensus: Setting

- Some set of nodes.
- Each receives some input: Considering binary consensus here so just 0/1.
Consensus: Setting

- Some set of nodes.
- Each receives some input: Considering binary consensus here so just 0/1.
Consensus: Setting

- Some set of nodes.
- Each receives some input: Considering binary consensus here so just 0/1.
- Each produces some output: Again just 0/1.
Consensus: Setting

- Some set of nodes.
- Each receives some input: Considering binary consensus here so just 0/1.
- Each produces some output: Again just 0/1.
Consensus Protocol: Requirements

- **Termination**: All correct nodes eventually decide on a value to output.
Consensus Protocol: Requirements

• **Termination**: All correct nodes *eventually* decide on a value to output.

• **Agreement**: All decided nodes decide on the *same* value.
Consensus Protocol: Requirements

- **Termination**: All correct nodes *eventually* decide on a value to output.
- **Agreement**: All decided nodes decide on the *same* value.
- **Non-Triviality**: There must exist *some* input leading to all possible decisions.
Consensus Protocol: Requirements

- **Termination**: All correct nodes *eventually* decide on a value to output.

- **Agreement**: All decided nodes decide on the *same* value.

- **Non-Triviality**: There must exist *some* input leading to all possible decisions.
 - Some input must result in algorithm deciding 0.
Consensus Protocol: Requirements

- **Termination:** All correct nodes **eventually** decide on a value to output.

- **Agreement:** All decided nodes decide on the **same** value.

- **Non-Triviality:** There must exist **some** input leading to all possible decisions.
 - Some input must result in algorithm deciding 0.
 - Some input must result in algorithm deciding 1.
Consensus Protocol: Requirements

• **Termination**: All correct nodes *eventually* decide on a value to output.

• **Agreement**: All decided nodes decide on the *same* value.

• **Non-Triviality**: There must exist *some* input leading to all possible decisions.
 • Some input must result in algorithm deciding 0.
 • Some input must result in algorithm deciding 1.

• **Validity**: The decision must be one of the inputs.
Consensus Protocol: Requirements

- **Termination**: All correct nodes *eventually* decide on a value to output.

- **Agreement**: All decided nodes decide on the *same* value.

- **Non-Triviality**: There must exist *some* input leading to all possible decisions.
 - Some input must result in algorithm deciding 0.
 - Some input must result in algorithm deciding 1.

- **Validity**: The decision must be one of the inputs.
 - Notice that validity implies non-triviality.
Consensus: Agreement
Consensus: Agreement
Consensus: Agreement
Consensus: Agreement
Consensus: Agreement

0 0 1
0 1 0

0 0 0
0 1 0
Consensus: Validity
Consensus: Validity
Consensus: Validity
Consensus: Validity
Consensus: Validity

1
0

1
0

1
0

X

0
0

0
0

0
0

✓
FLP Impossibility Theorem

- No deterministic 1-crash-robust consensus algorithm exists for async model.
- Highlighted bits important since things break if you do not consider them.
Walk Through FLP Proof
System Model/Configuration
System Model/Configuration

\[p_0 \quad \text{Process} \quad p_1 \quad \text{Process} \]
System Model/Configuration

Network

p_0
Process

p_1
Process
System Model/Configuration

Network

P_0 S_0
Process State

P_1
Process
System Model/Configuration

\[(p_1, m_0)\]
System Model/Configuration

(p₁, m₀)

Process

State

Network

(p₁, m₀)

Process
System Model/Configuration

\[(p_1, m_0)\]

Network

\[p_0, s_0\]

Process State

\[p_1\]

Process
System Model/Configuration

\[(p_1, m_0)\]

Network

\[(p_0, m_1)\]

Process

State

Process
System Model/Configuration

Network

$\{(p_1, m_0), (p_0, m_1)\}$

Process

State

p_0

p_1

(p_0, m_1)
System Model/Configuration

Configuration c_0

Network

(p_1, m_0)
(p_0, m_1)

(p_0, m_1)

p_0

p_1

Process State

Process
Events

\[(p_1, m_0) \]
\[(p_0, m_1) \]
Events

\[(p_0, m_1) \] → \[(p_1, m_0) \] → \[p_0 \]

\(s_0 \xrightarrow{(p_0, m_1)} s_1 \)

\((p_1, m_0) \)
Events

Process p_0 with states s_0, s_1, transitioning to s_1 through event (p_0, m_1).

Network

Process p_1 with states s_0, s_1, transitioning to s_1 through event $(p_1, m_0), (p_1, m_1), (p_1, m_2)$.
Events

- Configuration \(c_1 \)
- Network
- Process \(p_0 \) to \(p_1 \)
 - States: \(s_0 \) to \(s_1 \)
 - Transitions: \(s_0 \stackrel{(p_0,m_1)}{\rightarrow} s_1 \) to \((p_1,m_0) \) to \((p_1,m_2) \)
System Model/Configuration

\[c_0 \rightarrow c_1 \quad \text{Transition from } c_0 \text{ to } c_1 \]

\[c_0 \Rightarrow c_1 \quad \text{c}_1 \text{ reachable from } c_0 \]
Definitions

- 0-decided: A configuration where some process has decided on 0.
- 1-decided: A configuration where some process has decided on 1.
- 0-valent: All reachable decided configuration are 0-decided.
- 1-valent: All reachable decided configuration are 1-decided.
- Bivalent: Both 0 and 1 decided reachable configuration.
Definitions

0-decided

1-decided
Definitions

C

C₁ → C₂ → C₄ → C₅ → C₆

C₃

C₇

C₈

0-valent
Definitions

Bivalent
Proof Sketch

• **Lemma 1**: Any 1-crash tolerant consensus protocol has an initial bivalent config.
Proof Sketch

• **Lemma 1**: Any 1-crash tolerant consensus protocol has an initial bivalent config.

• **Lemma 2**: Given a bivalent configuration (γ) and event e can find configuration γ'
Proof Sketch

- **Lemma 1**: Any 1-crash tolerant consensus protocol has an initial bivalent config.

- **Lemma 2**: Given a bivalent configuration (γ) and event e can find configuration γ'

 - Event e is enabled in γ'
Proof Sketch

• **Lemma 1**: Any 1-crash tolerant consensus protocol has an initial bivalent config.

• **Lemma 2**: Given a bivalent configuration (γ) and event e can find configuration γ'

 • Event e is enabled in γ'

 • When e is applied to γ' the resulting configuration is bivalent.
Proof Sketch

• No **deterministic** 1-crash-robust consensus algorithm exists for **async model**.
Proof Sketch

- No **deterministic** 1-crash-robust consensus algorithm exists for **async model**.

1. Use Lemma 1 to pick an initial bivalent configuration.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration (c) and event e which has been enabled longest.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration (c) and event e which has been enabled longest.
 • Take the path from c to c' where e is still enabled in c'.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration (c) and event e which has been enabled longest.
 • Take the path from c to c' where e is still enabled in c'.
 • Apply e to c' to get a new bivalent configuration c''.
Proof Sketch

• No **deterministic** 1-crash-robust consensus algorithm exists for **async model**.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration \((c)\) and event \(e\) which has been enabled longest.
 - Take the path from \(c\) to \(c'\) where \(e\) is still enabled in \(c'\).
 - Apply \(e\) to \(c'\) to get a new bivalent configuration \(c''\).

3. Repeat step 2.
Lemma 1

• Why must an initial bivalent configuration exist?
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.
Lemma 1

- Why must an initial bivalent configuration exist?
- Consider a system with 4 processes.

\[p_0 \quad p_1 \quad p_2 \quad p_3 \]
Lemma 1

- Why must an initial bivalent configuration exist?
- Consider a system with 4 processes.

\[
\begin{array}{cccc}
p_0 & p_1 & p_2 & p_3 \\
0 & 0 & 0 & 0
\end{array}
\]
Lemma 1

• Why must an initial bivalent configuration exist?
• Consider a system with 4 processes.

\[
\begin{array}{cccc}
p_0 & p_1 & p_2 & p_3 \\
0 & 0 & 0 & 0 & 0
\end{array}
\]
Lemma 1

- Why must an initial bivalent configuration exist?
- Consider a system with 4 processes.

\[
\begin{array}{cccc}
 p_0 & p_1 & p_2 & p_3 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
\end{array}
\]
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

<table>
<thead>
<tr>
<th></th>
<th>p₀</th>
<th>p₁</th>
<th>p₂</th>
<th>p₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>?</td>
</tr>
</tbody>
</table>
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
 p_0 & p_1 & p_2 & p_3 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & ? \\
 0 & 0 & 1 & 1 & ? \\
\end{array}
\]
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
p_0 & p_1 & p_2 & p_3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & ? \\
0 & 0 & 1 & 1 & ? \\
\ldots
\end{array}
\]
Lemma 1

- Why must an initial bivalent configuration exist?
- Consider a system with 4 processes.

<table>
<thead>
<tr>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
 p_0 & p_1 & p_2 & p_3 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & ? \\
 0 & 0 & 1 & 1 & ? \\
 \cdots \\
 1 & 1 & 0 & 0 & ? \\
 1 & 1 & 1 & 0 & \\
\end{array}
\]
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
p_0 & p_1 & p_2 & p_3 \\
0 & 0 & 0 & 0 \quad 0 \\
0 & 0 & 0 & 1 \quad ? \\
0 & 0 & 1 & 1 \quad ? \\
\ldots \\
1 & 1 & 0 & 0 \quad ? \\
1 & 1 & 1 & 0 \quad ? \\
1 & 1 & 1 & 1 \\
\end{array}
\]
Lemma 1

- Why must an initial bivalent configuration exist?
- Consider a system with 4 processes.

<table>
<thead>
<tr>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
p_0 & p_1 & p_2 & p_3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & ? \\
0 & 0 & 1 & 1 & ? \\
\ldots & \ldots & \ldots & \ldots & ? \\
1 & 1 & 0 & 0 & ? \\
1 & 1 & 1 & 0 & ? \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Decision must flip from 0 to 1 somewhere
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
\text{p}_0 & \text{p}_1 & \text{p}_2 & \text{p}_3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & ? \\
0 & 0 & 1 & 1 & ? \\
... & & & & \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Decision must flip from 0 to 1 somewhere
Lemma 1

• Why must an initial bivalent configuration exist?

• Consider a system with 4 processes.

\[
\begin{array}{cccc}
 p_0 & p_1 & p_2 & p_3 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & ? \\
 0 & 0 & 1 & 1 & ? \\
 \ldots \\
 1 & 1 & 0 & 0 & 0 \\
 1 & 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Decision must flip from 0 to 1 somewhere

Identical except at \(p_2 \)
Lemma 1

<table>
<thead>
<tr>
<th></th>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision must flip from 0 to 1 somewhere
Identical except at p_2

Consensus protocol is 1-crash tolerant
Lemma 1

Decision must flip from 0 to 1 somewhere

Identical except at \(p_2 \)

Consensus protocol is 1-crash tolerant
Lemma 1

<table>
<thead>
<tr>
<th>p₀</th>
<th>p₁</th>
<th>p₂</th>
<th>p₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision must flip from 0 to 1 somewhere

Identical except at p₂

Consensus protocol is 1-crash tolerant

| 1 | 1 | X | 0 | ? |
Lemma 1

Consensus protocol is 1-crash tolerant

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_0</td>
<td>p_1</td>
<td>p_2</td>
<td>p_3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

1, 1, x, 0, $?$
Lemma 1

<table>
<thead>
<tr>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Consensus protocol is 1-crash tolerant

If result is 0 then (1, 1, 1, 0) is bivalent (depending on whether p_2 crashes)
Lemma 1

<table>
<thead>
<tr>
<th>p_0</th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Consensus protocol is 1-crash tolerant

If result is 0 then (1, 1, 1, 0) is bivalent (depending on whether p_2 crashes)

If result is 1 then (1, 1, 0, 0) is bivalent (depending on whether p_2 crashes)
Lemma 1

Consensus protocol is 1-crash tolerant

If result is 0 then (1, 1, 1, 0) is bivalent (depending on whether p_2 crashes)

If result is 1 then (1, 1, 0, 0) is bivalent (depending on whether p_2 crashes)
Lemma 2 is a bit more involved
What is Lemma 2

- **Lemma 2**: Given a bivalent configuration (γ) and event e can find configuration γ'
What is Lemma 2

- **Lemma 2**: Given a bivalent configuration (γ) and event e can find configuration γ'

 - Event e is enabled in γ'
What is Lemma 2

- **Lemma 2:** Given a bivalent configuration (γ) and event e can find configuration γ'
 - Event e is enabled in γ'
 - When e is applied to γ' the resulting configuration is bivalent.
Configurations

• Any configuration of 1-crash resistant robust consensus protocol is:
 • Bivalent
 • 0-valent
 • 1-valent
• Why?
Bivalent Configurations

\[\gamma \rightarrow \gamma' \]

Bivalent - Bivalent

\[\gamma \rightarrow 0\text{-valent} \rightarrow 1\text{-valent} \]

Bivalent - 0-valent - 1-valent
Bivalent Configurations

Challenge with the lemma: showing that left side is what happens and e is applicable
Diamond Theorem: Events

- Consider some configuration \mathbf{C} and two events e_0 and e_1.
Diamond Theorem: Events

• Consider some configuration \(C \) and two events \(e_0 \) and \(e_1 \).

• Assume \(e_0 \) involves deliver message to process \(p \) and \(e_1 \) to process \(q \).
Diamond Theorem: Events

- Consider some configuration C and two events e_0 and e_1.
- Assume e_0 involves deliver message to process p and e_1 to process q.
Diamond Theorem: Events

- Consider some configuration C and two events e_0 and e_1.
- Assume e_0 involves deliver message to process p and e_1 to process q.

Why?
Diamond Theorem: Schedules

- A schedule σ is a sequence of events.

- Define two schedules σ_0 and σ_1 as non-interfering iff no process appears in both.
Diamond Theorem: Schedules

- A schedule σ is a sequence of events.
- Define two schedules σ_0 and σ_1 as non-interfering iff no process appears in both.
Diamond Theorem: Schedules

- A schedule \(\sigma \) is a sequence of events.
- Define two schedules \(\sigma_0 \) and \(\sigma_1 \) as non-interfering iff no process appears in both.

Why?

\[C \xrightarrow{\sigma_0} C' \xrightarrow{\sigma_1} C'' \xrightarrow{\sigma_0} C_f \]
Walking through Proof for Lemma 2

• Assume starting configuration \(\gamma \) and event \(e \).

• Assume \(e \) involves some process \(p \).
Proof Setup

• Assume starting configuration γ and event e.

• Assume e involves some process p.
Proof Setup

- Assume starting configuration γ and event e.

- Assume e involves some process p.
Proof Setup

- Assume starting configuration γ and event e.
- Assume e involves some process p.
Proof Setup

- Assume starting configuration γ and event e.
- Assume e involves some process p.
Proof

- Does D contain any bivalent configurations?
Proof

• Does D contain any bivalent configurations?

• Prove this by contradiction.
Proof Sketch

- Assume no bivalent configuration in D.
- All configurations must be 0-valent or 1-valent.
- First show that there exist both 0-valent and 1-valent configuration in D.
Proof

• Assume D contains no bivalent configurations.
Proof

• Assume D contains no bivalent configurations.

• We can reach a 0-valent and 1-valent configuration from γ.
Proof

• Assume D contains no bivalent configurations.

• We can reach a 0-valent and 1-valent configuration from γ.

 • Call these γ_0 and γ_1 respectively.
• Assume D contains no bivalent configurations.

• We can reach a 0-valent and 1-valent configuration from γ.
 • Call these γ_0 and γ_1 respectively.

• If γ_0 is in R, then $e(\gamma_0)$ is in D and is 0-valent.
Proof
Proof

• We can reach a 0-valent and 1-valent configuration from γ.

 • Call these γ_0 and γ_1 respectively.

• If γ_0 is in R, then $e(\gamma_0)$ is in D and is 0-valent.
Proof

- We can reach a 0-valent and 1-valent configuration from γ.
 - Call these γ_0 and γ_1 respectively.
- If γ_0 is in R, then $e(\gamma_0)$ is in D and is 0-valent.
- If γ_0 is not in R then there must exist configuration C in R such that
Proof

• We can reach a 0-valent and 1-valent configuration from γ.
 • Call these γ_0 and γ_1 respectively.

• If γ_0 is in R, then $e(\gamma_0)$ is in D and is 0-valent.

• If γ_0 is not in R then there must exist configuration C in R such that
 • C is on the path between γ and γ_0.
Proof

• We can reach a 0-valent and 1-valent configuration from γ.

 • Call these γ_0 and γ_1 respectively.

• If γ_0 is in R, then $e(\gamma_0)$ is in D and is 0-valent.

• If γ_0 is not in R then there must exist configuration C in R such that

 • C is on the path between γ and γ_0.

 • $e(C)$ is in D and is 0-valent.
Proof
Proof
Proof Sketch

• Assume no bivalent configuration in D.

• All configurations must be 0-valent or 1-valent.

• First, show that there exist both 0-valent and 1-valent configuration in D.
Proof Sketch

• Assume no bivalent configuration in D.
• All configurations must be 0-valent or 1-valent.
• First, show that there exist both 0-valent and 1-valent configuration in D.
• Show that there exist two neighboring configurations c and c' in R s.t.:
Proof Sketch

- Assume no bivalent configuration in D.
- All configurations must be 0-valent or 1-valent.
- First, show that there exist both 0-valent and 1-valent configuration in D.
- Show that there exist two neighboring configurations c and c' in R s.t.:
 - $d_0 = e(c)$ and $d_1 = e(c')$; d_0 is 0-valent and d_1 is 1-valent
Proof Sketch

• Assume no bivalent configuration in D.

• All configurations must be 0-valent or 1-valent.

• First, show that there exist both 0-valent and 1-valent configuration in D.

• Show that there exist two neighboring configurations c and c' in R s.t.:
 • $d_0 = e(c)$ and $d_1 = e(c')$; d_0 is 0-valent and d_1 is 1-valent
 • Show this is a contradiction to original assumption.
Proof
Proof

• D contains a 0 and 1 valent configuration -- d_0 and d_1.
Proof

• D contains a 0 and 1 valent configuration -- d_0 and d_1.

• Claim: There exist c and c' in C such that
Proof

• D contains a 0 and 1 valent configuration -- d_0 and d_1.

• Claim: There exist c and c' in C such that

 • $c' = f(c), d_0 = e(c), d_1 = e(c')$
Proof

• D contains a 0 and 1 valent configuration -- d_0 and d_1.

• Claim: There exist c and c' in C such that

 • $c' = f(c)$, $d_0 = e(c)$, $d_1 = e(c')$
Proof
Proof
Proof
Proof
Proof

\[\gamma \rightarrow e \quad e \rightarrow 0 \]

\[e \rightarrow 1 \quad R \]

\[D \]
Proof

- Two options
Proof

- Two options
- Event e and f happen on the same process
Proof

- Two options
 - Event e and f happen on the same process
 - Event e and f happen on different processes
Proof

- If e and f happen on different processes.
• If e and f happen on different processes.
• Apply Diamond theorem to move event
Proof

- If e and f happen on different processes.
- Apply Diamond theorem to move event
Proof

• If e and f happen on different processes.
 • Apply Diamond theorem to move event
 • Contradiction: Left event is not 0-valent and is bivalent.
Proof

• If e and f happen on the same process p.
Proof

• If \(e \) and \(f \) happen on the same process \(p \).

• Consensus algorithm must work even if \(p \) is silent.
Proof

• If e and f happen on the same process p.

• Consensus algorithm must work even if p is silent.
Proof

- If e and f happen on the same process p.
- Consensus algorithm must work even if p is silent.
Proof

- If e and f happen on the same process p.
- Consensus algorithm must work even if p is silent.
Proof

- If e and f happen on the same process p.
- Consensus algorithm must work even if p is silent.
Proof

- If e and f happen on the same process p.
- Consensus algorithm must work even if p is silent.
Proof

• If e and f happen on the same process p.

• Consensus algorithm must work even if p is silent.
Proof

• If e and f happen on the same process p.

• Consensus algorithm must work even if p is silent.
Proof

- If \(e \) and \(f \) happen on the same process \(p \).
- Consensus algorithm must work even if \(p \) is silent.
Proof

- If \(e \) and \(f \) happen on the same process \(p \).
- Consensus algorithm must work even if \(p \) is silent.
Proof

• If e and f happen on the same process p.

• Consensus algorithm must work even if p is silent.
Proof

• If \(e \) and \(f \) happen on the same process \(p \).

• Consensus algorithm must work even if \(p \) is silent.
Proof

• If e and f happen on the same process p.

• Consensus algorithm must work even if p is silent.
Proof

• If e and f happen on the same process p.

• Consensus algorithm must work even if p is silent.
Proof

- If \(e \) and \(f \) happen on the same process \(p \).
- Consensus algorithm must work even if \(p \) is silent.

Contradiction: Nodes in A had decided, A cannot be bivalent.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration (c) and event e which has been enabled longest.
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration \((c) \) and event \(e \) which has been enabled longest.
 • Take the path from \(c \) to \(c' \) where \(e \) is still enabled in \(c' \).
Proof Sketch

• No deterministic 1-crash-robust consensus algorithm exists for async model.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration (c) and event e which has been enabled longest.
 • Take the path from c to c' where e is still enabled in c'.
 • Apply e to c' to get a new bivalent configuration c''.
Proof Sketch

• No **deterministic** 1-crash-robust consensus algorithm exists for **async model**.

1. Use Lemma 1 to pick an initial bivalent configuration.

2. Given a bivalent configuration (c) and event e which has been enabled longest.
 - Take the path from c to c' where e is still enabled in c'.
 - Apply e to c' to get a new bivalent configuration c''.

3. Repeat step 2.
Quiz!!