Intro to Computational Linguistics: Final Review Lecture

Adam Meyers
New York University
Summary

• Administrative Details
• Regular Expressions
 – Writing them applying them to data
• Phrase structure and POS
 – Annotation
 – Algorithms using them or for detecting them: Viterbi, HMM, CKY parsing
• Bigrams and Unigrams
• TFIDF and Cosine similarity
• Sequence Labeling with BIO tags: Noun Groups and NEs
• Reference Resolution
 – Binding Theory, Hobbs Search
• Calculating Evaluation Measures
• Feature Structure (quick example)
• Machine Translation: EM and Decoding
• Following Annotation Guidelines/Doing Linguistic Analyses
• Additional Questions
Final Exam

- Open book, Open notes, calculator is OK
 - No email, texting, using programs for algorithms
- You have approximately 1 hour and 50 minutes to do it – it is OK to leave early if you are done.
- You should put your name on all test materials.
- It should be easy for me to find your answers. If you put them anywhere, but on the test itself, please include a note so that I can find it.
- The sample test is an approximation of the real test
 - There may be stuff on the real test that is not on the practice and vice versa
 - The real test will be no longer than the practice test – it may be shorter
- Strategy: Do all the fast questions first
 - Initially, do not spend more than 7 minutes on a question.
 - Then go back and complete what you didn't on the first round
Regexp = formula specifying set of strings

- Regexp = ∅
 - The empty set (base case 1, doesn't recognize any strings)
- Regexp = ε
 - The empty string (base case 2, recognizes the empty string)
- Regexp = a sequence of one or more characters from the set of characters
 - X
 - Y
 - This sentence contains characters like &T^{**}%P

- Disjunctions, concatenation, and repetition of regexps yield new regexps
Concatenation, Disjunction, Repetition

- **Concatenation**
 - If X is a regexp and Y is a regexp, then XY is a regexp
 - Examples
 - If ABC and DEF are regexps, then $ABCDEF$ is a regexp
 - If AB^* and BC^* are regexps, then AB^*BC^* is a regexp
 - Note: Kleene * is explained below

- **Disjunction**
 - If X is a regexp and Y is a regexp, then $X | Y$ is a regexp
 - Example: $ABC|DEF$ will match either ABC or DEF

- **Repetition**
 - If X is a regexp than a repetition of X will also be a regexp
 - The Kleene Star: A^* means 0 or more instances of A
 - Regexp{number}: $A{2}$ means exactly 2 instances of A
Regexp Notation Continued

• Disjunction of characters
 – \([ABC]\) – means the same thing as \(A \mid B \mid C\)
 – \([a-zA-Z0-9]\) – ranges of characters equivalent to listing characters, e.g., \(a|b|c|...|A|B|...|0|1|...|9\)
 – ^ inside of bracket means complement of disjunction, e.g., \(^{a-z}\) means a character that is neither \(a\) nor \(b\) nor \(c\) … nor \(z\)

• Parentheses
 – Disambiguate scope of operators
 • \(A(BC)|(DEF)\) means \(ABD\) or \(ADEF\)
 • Otherwise defaults apply, e.g., \(ABC|D\) means \(ABC\) or \(ABD\)

• ? signifies optionality
 – \(ABC?\) is equivalent to \((ABC)|(AB)\)

• + indicates 1 or more
 – \(A(BC)^*\) is equivalent to \(A|(A(BC)^+)\)
Regexp Notation Continued

- Special Symbols:
 - $A. *B$ – matches A and B and any characters between (period = any character)
 - ABC – matches ABC at beginning of line ($^$ represents beginning of line)
 - $/\.?!$/ – matches sentence final punctuation ($\$ represents end of line)

- What is a “good” regexp to solve some task
 - Not overly specific
 - Capture generalizations
 - Covers some unseen examples
 - Not overly general
 - Should not match obviously wrong cases
Sample Regular Expression

- A regular expression for a date that will include the following expressions:
 - January 3, 2012
 - January, 2012
 - January 3
 - Jan. 3, 2012
- Specific Constraints:
 - Allow all the months of the year, as well as abbreviations that consist of the first 3 letters of the month and a period
 - The day should be a one or two digit number
 - The year should be a four digit number
 - Valid patterns include: Month Day; Month, Year; Month; year
 - A comma and a space precede the year, when it occurs with other elements:
 - Month, Year or Month Day, Year
- Bad answers
 - Too Specific: \((January(3)?, 2012)\)|(January 3)|(Jan\. 3, 2012)
 - Too General: \[A-Za-z\./]+([0-9])+\,
- Good Answer: ((Jan(uary)?)|(Feb(ruary)?)|(Mar(ch)?)|(Apr(il)?)|(May)|(Jun(e)?)|(Jul(y)?)|(Aug(ust)?)|(Sep(t?)(ember)?)|(Oct(ober)?)|(Nov(ember)?)|(Dec(ember)?)\).
 - (? [1-3]?[0-9])\,(, [0-9]{4})?
Phrase Structure Rules and Tree

• Draw a Phrase Structure Tree, including Penn POS tags, and List the Rules for the following sentence from Wikipedia (shortened slightly):
 – Parodia tenuicylindrica is a small species of cactus native to Brazil
 – We will assume that:
 • species names consist of proper nouns
 • all the words in proper noun phrases are proper nouns
 – This phrase *native to Brazil* is the most difficult part of this sentence to analyze and I may ask a specific question about this.
Parodia tenuicylindrica is a small species of cactus native to Brazil
Phrase Structure Rules used

• $S \rightarrow NP \ VP$
• $NP \rightarrow NNP \ NNP$
• $NP \rightarrow NNP$
• $NP \rightarrow NN$
• $NP \rightarrow DT \ ADJ \ NN$
• $NP \rightarrow NP \ PP \ ADJP$
• $PP \rightarrow IN \ NP$
• $VP \rightarrow VBZ \ NP$
• $ADJP \rightarrow JJ \ PP$
Things to Remember about Phrase Structure

- **PP → P NP**
 - *in the room, at the table, by John, with gusto*
- **Sbar → special_word S**
 - special_word → that, for, subord_conj, wh_word
 - *that she would leave soon*
 - *for her to leave*
 - *if she leaves*
- **CC combines 2 or more Xs to produce a new X**
 - *[NP [NP John] [CC and] [NP [DT the] [NN blender]]]*
 - *[S [S The ball went up] [CC or] [S Maybe it didn't]]*
- **Punctuation matters – it should be included, typically with itself or PU as its POS**
Chomsky Normal Form (required by CKY)

- Context Free Grammars can be converted to CNN
 - 3 types of rules:
 - XP → YP ZP Binary Branching
 - XP → x NonTerminal → terminal
 - XP → ε NonTerminal → empty string

- Conversion
 - Replace \(VP \rightarrow VG \) & \(NP \rightarrow NG \) with nonbranching rules expanding VP and NP to whatever VG and NG matched to:
 - Not good examples: \(VP \rightarrow ate, VP \rightarrow had, NP \rightarrow food, \ldots \)
 - Usually V and N are assumed to be nonterminals, and the POS of words are looked up
 - Replace \(VP \rightarrow V NP PP \) with 2 rules:
 - \(VP \rightarrow VG PP \)
 - \(VG \rightarrow V NP \)
 - Replace: \(NP \rightarrow POSSP N PP \) with 2 rules:
 - \(NP \rightarrow NG PP \)
 - \(NG \rightarrow POSSP N \)
Sample Grammar for CKY

- S → NP VP
- NP → D N
- NP → PossP N
- NP → N
- PossP → NP Poss
- VP → V NP
- VP → V
- N → clam
- N → edges
- N → shell
- D → the
- Poss → 's
- V → has
- V → edges
- V → shell
<table>
<thead>
<tr>
<th></th>
<th>The</th>
<th>clam</th>
<th>'s</th>
<th>shell</th>
<th>had</th>
<th>edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>D</td>
<td>NP</td>
<td>POSSP</td>
<td>NP</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>[0,1]</td>
<td>[0,2]</td>
<td>[0,3]</td>
<td>[0,4]</td>
<td>[0,5]</td>
<td>[0,6]</td>
</tr>
<tr>
<td>1</td>
<td>N, NP</td>
<td>POSSP</td>
<td>NP</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>[1,2]</td>
<td>[1,3]</td>
<td>[1,4]</td>
<td>[1,5]</td>
<td>[1,6]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>POSSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>N,NP,V,VP</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3,4]</td>
<td>[3,5]</td>
<td>[3,6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>V, VP</td>
<td></td>
<td></td>
<td>V, VP</td>
<td>VP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[4,5]</td>
<td>[4,6]</td>
<td></td>
<td>[4,6]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N,NP,V,VP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[5,6]</td>
<td></td>
</tr>
</tbody>
</table>
Viterbi Decoding of HMM for *rose pickles*

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05

- **Transition Probabilities:**
Rose Pickles

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05
- **Fill in:** max (previous X transition X likelihood)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1: Rose</th>
<th>2: Pickles</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNP</td>
<td></td>
<td>.42 * .01</td>
<td>0.001.001 .001.23*0.01</td>
<td></td>
</tr>
<tr>
<td>NNS</td>
<td></td>
<td>0.03 .3.03</td>
<td>.001.03*.24*.03</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td></td>
<td>.20 * .02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBZ</td>
<td></td>
<td></td>
<td>0.05 .1.05 .05.05</td>
<td></td>
</tr>
<tr>
<td>VBD</td>
<td></td>
<td>.05 * .05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Likelihood:

- *rose:* NNP .01, NN .02, VBD .05
- *pickles:* NNP .001, NNS .03, VBZ .05

Fill in: max (previous X transition X likelihood)
Rose Pickles

- **Likelihood:**
 - *rose*: NNP .01, NN .02, VBD .05
 - *pickles*: NNP .001, NNS .03, VBZ .05
- **Fill in:** max (previous X transition X likelihood)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1: Rose</th>
<th>2: Pickles</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNP</td>
<td>.42 * .01</td>
<td></td>
<td>0.001=0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.001=0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.23.001 = 9.67 * 10^-7</td>
<td></td>
</tr>
<tr>
<td>NNS</td>
<td>0.03=0</td>
<td></td>
<td>.3.03 =3.6*10^-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.24.03 = 1.8*10^-5</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>.20 * .02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBZ</td>
<td></td>
<td></td>
<td>.3.05 = 6.3*10^-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.1.05= 1.25*10^-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.0.05=0</td>
<td></td>
</tr>
<tr>
<td>VBD</td>
<td>.05 * .05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
<td>*.2 = 1.93 * 10^-7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.15 = 5.410^-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.45 = 2.8410^-5</td>
<td></td>
</tr>
</tbody>
</table>
Unigram & Bigram Language Models

• If a system produces multiple possible sentences, models can be used to determine which sentence is more probable?

• System output of:
 – Machine Translation
 – Speech Recognition
 – Language Generation
 – Automatic Summarization

• Unigram model: product of probabilities of each word independently
 – probability of word = count of word in corpus/total words in corpus

• Bigram model: product of probabilities of each word
 – probability of word = Count(prev_word,word)/Count(prev_word)

• OOV model – different possible OOV models, but we assume:
 – Words in training that occur once are instances of *OOV*
Applying Unigram Model

- Counts of these words in the Brown Corpus using NLTK
 - \(A 23195 \) fact 447 about 1815 the 69971 unicorn 0 is 10109 the 69971 same 686
 as 7253 an 3740 alternative 34 fact 447 about 1815 the 69971 unicorn 0 . 49346

- Unigram probability—there are 1161192 words in Brown
 - \(A 0.02 \) fact 0.000385 about 0.00156 the 0.0603 unicorn 0.0 is 0.00871 the 0.0603
 same 0.000591 as 0.00625 an 0.00322 alternative 2.93e-05 fact 0.000385 about
 0.00156 the 0.0603 unicorn 0.0 . 0.0425

- Unigram Probability with OOV model (15673 OOV words)
 - a 0.02 fact 0.000385 about 0.00156 the 0.0603 unicorn 0.0135 is 0.00871 the 0.0603
 same 0.000591 as 0.00625 an 0.00322 alternative 2.93e-05 fact 0.000385 about
 0.00156 the 0.0603 unicorn 0.0135 . 0.0425
Applying Bigram Model

- *start_end* a 0.0182
- a fact 0.000388
- fact about 0.00447
- about the 0.182
- the *oov* 0.0293
- *oov* is 0.00485
- is the 0.0786
- the same 0.00898
- same as 0.035
- as an 0.029
- an alternative 0.00241
- alternative fact 0, thus 0.000385 (unigram for fact)
- fact about 0.00447
- about the 0.182
- the *oov* 0.0293
- *oov* . 0.0865
- . *start_end* 1.0
- Total = product of probs = 1.12e-30

- Bigram = freq of seq/freq of first word
- If Bigram = 0, use unigram instead
- See bigram_test.py file
 - http://cs.nyu.edu/courses/fall17/CSCI-UA.0480-006/bigram_test.py
TFIDF

• TFIDF – Property of Term with respect to a document
 – keyword suitability, representativeness of a topic, etc.
 – Uses: Doc Retrieval, Term Extraction, etc.
• TF = frequency in a document
• IDF = number of documents in sample divided by number of documents containing word
• TFIDF = TF * log(IDF)
• Example: “rock” occurs 10 times in document X. It occurs in 100 out of 3000 documents in collection. TFIDF = 10*log(3000/100) = 34.01
Cosine Similarity Between Query and Document

\[\text{Similarity}(A, B) = \frac{\sum_i a_i \times b_i}{\sqrt{\sum_i a_i^2 \times \sum_i b_i^2}} \]

• Example:
 – the terms in the vectors include: animal, vegetable, mineral, monkey, golf enthusiast
 – The vector for the query is: \([0,0,0,34,.8]\)
 – The vector for a given document is: \([1,2,3,4,5]\)
 – What is the similarity?
 • \[
 \frac{0+0+0+(34 \times 4)+(0.8 \times 5)}{\sqrt{(0+0+0+34^2+8^2) \times (1^2+2^2+3^2+4^2+5^2)}} = \frac{140}{\sqrt{640 \times 55}} \approx .2014
 \]
Sequence Labeling with BIO tags

- Noun group BIO tags
 - The B
 - big I
 - bad I
 - wolf I
 - approached 0
 - the B
 - house I

- NE BIO tags
 - However 0
 - , O
 - International B-ORG
 - Business I-ORG
 - Machines I-ORG
 - and O
 - Google B-ORG
 - rose 0
 - in 0
 - active 0
Basic NE types

• Person – a person name (*Mary Smith*) or a set of people (*the Smith family*)
• GPE – Name associated with land mass, a government and the people who live there (*the United States, New Jersey, …*)
• ORG – Name associated with a company, club, or other type of structured unit with members, employees and/or other types of participants (*IBM, the Catholic Church, the NY Police Department, …*)
Binding Theory for English 3rd Pers Prons

• Case 1: If the pronoun \(p \) is inside an NP premodified by a possessive, the antecedent needs to be outside of this NP
 – \textit{John} likes \textit{Mary's} drawing of \textit{him}
 – \textit{John} likes \textit{his} drawing of \textit{Mary}

• Case 2: Otherwise, the antecedent must be outside the immediate tensed clause containing the personal pronoun.
 – \textit{John} said that \textit{he} liked pizza.
 – \textit{John} wanted for \textit{him} to like pizza.
 – \textit{John} liked \textit{him}.

• Theories of binding vary about how these (and similar) constraints are encoded, but the differences in the final result (quality of system output) is minimal. While these 2 rules cover most cases, there are also some exceptions:
 – \textit{John} always carries a slice of pizza with \textit{him}.
Binding Theory for English Reflexives/Reciprocals

- The antecedent of a reflexive/reciprocal must be the closest subject or possessive such that:
 - The antecedent precedes and “commands” the pronoun
 - A commands B if A is the sibling of a phrase that dominates B.
 - There is no possessive or subject for phrases in the path in the phrase structure tree between antecedent and pronoun

- Examples:
 - *Mary saw herself vs. Mary said that John would meet herself soon*
 - *Mary's picture of herself vs. Mary saw John's picture of herself*

- These rules covers most cases.
 - Exception: *Pictures of themselves made the actors nervous.*
Computational Linguistics
Review Lecture
2017

Hobbs Search Algorithm to Find Antecedent of Anaphors

1. Go to NP immediately dominating pronoun
2. Go up to 1st dominating NP or S node. This node = X path to X = p.
3. Traverse branches below X to the left of p, left-to-right and and breadth first. Propose each NP n as an antecedent if there is an NP or S between n and X.
4a. Is X the highest S in the sentence? (Recursive)
 - Yes
 4b. Search previous sentences in order from right to left. Search each tree from left to right, breadth 1st, proposing each NP as antecedent
 - No
 5. From Node X, go up to the 1st NP or S. Call this node X and the path to X p.
 6. If X = NP and there is no N’ in p, propose X as antecedent
5. Yes
 7. Search for antecedent in branches below X, left-to-right, breadth first. Propose each NP.
7. No
 8. If X is an S node, traverse all branches of X following p, left-to-right, breadth first, but not going below any S or NP node found. Propose each NP.

End
Hobbs Search Example

1. Mary saw the chicken.
2. Jim said that she laughed.
Evaluation

- Accuracy: If the answer key and system output are guaranteed to be the same length

 \[\text{Accuracy} = \frac{\text{Correct}}{\text{Total Items}} \]

- Recall/Precision/F-Score given answer key for a task

 \[\text{Recall} = \frac{|\text{Correct}|}{|\text{Answer Key}|} \quad \text{Precision} = \frac{|\text{Correct}|}{|\text{System Output}|} \quad F - \text{Score} = \frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}} \]

- Kappa – How much better is interannotator agreement than chance?

 \[\text{Kappa} = \frac{\text{Percent (Actual Agreement)} - \text{Prob (Chance Agreement)}}{1 - \text{Prob (Chance Agreement)}} \]

- Coreference with the B-cubed algorithm

 - Precision: For each partition of Coreferential NPs in system output: average the percentage of links in the answer

 - Recall: For each partition of Coreferential NPs in the answer, average the percentage of links in the system output

 - Example:

 - 2 system entities: \{A_1, A_2, A_3, A_4, C_1\} and \{B_1, B_2\}

 - 2 answer key entity: \{A_1, A_2, A_3, A_4, B_1, B_2\} and \{C_1\}

 - Precision = \((4 \times 4/5) + 1/5 + 2\) \times 1/7 = .77

 - Recall = \((4 \times 2/3) + (2 \times 1/3) + 1\) \times 1/7 = .62
Example Feature Structure Question

• What (Typed) Feature Structure would result if FS1 was unified with the value of the path quant in FS2?
 – Note: orth is short for orthography and cat is short for category

[Image of Feature Structures]
Answer to Sample FS Question

![Diagram of linguistic structure with labels such as NP, Head, DT, quant, cat, orth, determiner, these, fish, AGR, Number, Person, 3rd, Plural, Agreement, Orth, and other related terms.](image-url)
Machine Translation Questions

• Decoding Question (like the sample test)
• Walk through part of Maximization/Estimation
 – Given a set of translation probabilities, calculate the probability of a particular alignment
 – Given a set of alignments and their probability scores, calculate the new translation probabilities
Simplified Example of EM model

• Given
 – 4 French words: *la*, *maison*, *bleu*, and *fleur*
 – 4 English words: *the*, *house*, *blue* and *flower*
 – We only allow 1 to 1 alignments

• Starting assumption
 – Each French word has a .25 chance of being translated as a given English word
Initial Alignment Probs for 3 E/F pairs

- Initial: \textit{la/the} (.25), \textit{maisson/the} (.25), \textit{la/house} (.25), \textit{maisson/house} (.25)

- \textit{la maisson} \rightarrow \textit{the house}
 - \textit{la/the} X \textit{maisson/house} = .0625
 - \textit{maisson/the} X \textit{la/house} = .0625

- \textit{la maisson bleu} \rightarrow \textit{the blue house} (all possible alignments)
 - \textit{la/the} X \textit{maisson/house} X \textit{bleu/blue} = .25^3 = .015625
 - \textit{la/the} X \textit{maisson/blue} X \textit{bleu/house} = .015625
 - \textit{la/house} X \textit{maisson/the} X \textit{bleu/blue} = .015625
 - \textit{la/house} X \textit{maisson/blue} X \textit{bleu/house} = .015625
 - \textit{la/blue} X \textit{maisson/house} X \textit{bleu/the} = .015625
 - \textit{la/blue} X \textit{maisson/the} X \textit{bleu/house} = .015625

- \textit{La fleur} \rightarrow \textit{the flower}
 - \textit{la/the} X \textit{fleur/flower} = .0625
 - \textit{fleur/the} X \textit{la/flower} = .0625
Maximum Liklihood Estimates (MLE)

- For each e/f pair and for each sentence, add up the probabilities of alignments that contain that pair and regularize to 1 (initially: all prob=.25)
- Sum these scores and divide by the number of instances of f.
- Translations from X to the
 - la/the: .5 of the first set of alignments, .33 of the second set and .5 of the 3rd set
 - \((.5 + .33 + .5) / 3 = .44\)
 - maison/the: .5 of the 1st + .33 of the 2nd, 0 in the 3rd
 - \((.5 + .33)/3 = .42 = .29\)
 - bleu/the: 0 in the 1st + .33 of the 2nd + 0 in the 3rd
 - .33/3 = .11
 - fleur/the: 0 in the 1st and 2nd, .5 in the 3rd
 - .5/3 = .17

- house: la/house=.42, maison/house=.42, bleu/house=.17, fleur/house=0
- blue: la/blue=.33, maison/blue=.33, bleu/blue=.33, fleur/blue=0
- flower: la/flower=.5 maison/flower=0, blue/flower=0, fleur/flower=.5
Expectation: Rescore Alignments

• **la maison → the house**
 – *la/the* (.44), *maisson/the* (.29), *la/house* (.42), *maisson/house* (.42)
 – *la/the X maison/house* = .1848
 – *maisson/the X la/house* = .1276

• **la maison bleu → the blue house** (all possible alignments)
 – *la/the X maison/house X bleu/blue* = .06098
 – *la/the X maison/blue X bleu/house* = .02468
 – *la/house X maison/the X bleu/blue* = .04019
 – *la/house X maison/blue X bleu/house* = .02356
 – *la/blue X maison/house X bleu/the* = .045274
 – *la/blue X maison/the X bleu/house* = .016269

• **La fleur → the flower**
 – *la/the X fleur/flower* = .22000
 – *fleur/the X la/flower* = .08500
Translating sample sentence

- Input: *La maissan bleu*
- Translation probabilities (hypothetical):

<table>
<thead>
<tr>
<th>French</th>
<th>English</th>
<th>the</th>
<th>blue</th>
<th>house</th>
<th>flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>the</td>
<td>.70</td>
<td>.10</td>
<td>.15</td>
<td>.05</td>
</tr>
<tr>
<td>maison</td>
<td>blue</td>
<td>.24</td>
<td>.26</td>
<td>.50</td>
<td>0</td>
</tr>
<tr>
<td>bleu</td>
<td>house</td>
<td>.25</td>
<td>.41</td>
<td>.22</td>
<td>.12</td>
</tr>
<tr>
<td>fleur</td>
<td>flower</td>
<td>.19</td>
<td>.17</td>
<td>.01</td>
<td>.63</td>
</tr>
</tbody>
</table>

- Unigram probabilities (count in WSJ ÷ 1 million)
 - *the* = .035, *blue* = 1.3 X 10^{-4}, *house* = 6.7 X 10^{-4}, *flower* = 6 X 10^{-6}
- The most probable translation would be:

 - *the house blue* = translation-prob X language prob = 4.37 X 10^{-10}
 - translation-prob = .7 X .5 X .41 = .1435
 - Lang-prob = .035 X 6.7 X 10^{-4} X 1.3 X 10^{-4} = 3.05 X 10^{-9}
Sample Annotation Task

• Semantic Role Labeling: Find each noun like ABILITY (listed in allcaps) and mark 2 arguments: a sentient NP that can do an action (ARG0) and a description of the action or type of action (ARG1). ARG0 and ARG1 are both optional. Arguments can occur anywhere in the sentence, but prefer close arguments.

• Examples:
 – [the government]'s ABILITY [to pay its bills]
 ARG0 ARG1
 – [the government]'s legal CAPACITY
 ARG0 ARG1
Data to Mark Up

• The government's borrowing AUTHORITY declined at midnight on Tuesday
• Mr. Honecker headed the Poliburo's security APPARATUS
• The complicated new funding DEVICE will cause more problems than it will solve.
• The First World has for some time had the bad HABIT of smothering other people's economies with this kind of unfocused kindness.
• So do just about all the losses that could be attributed to the sheer INCOMPETENCE of unqualified planners.
Practice Final and Answers

• Practice Test

• Answers