Quick Sort
Quick Sort: a randomized sorting algorithm

QSort(L):

choose p from L at random
partition L into 3 sublists: $L_{<p}, L_{=p}, L_{>p}$

if length($L_{<p}$) > 0 then $L_{<p} \leftarrow$ QSort($L_{<p}$)
if length($L_{>p}$) > 0 then $L_{>p} \leftarrow$ QSort($L_{>p}$)
return append($L_{<p}, L_{=p}, L_{>p}$)

Practical implementation:

- use the fast, in-place partition algorithm from last time
Intuition:

we split the problem into two problems of “roughly equal” size (in linear time) and then solve *both* of them

reminds us of the recurrence $T(n) \leq 2T(n/2) + O(n)$

Master Theorem says: $T(n) = O(n \log n)$

BUT . . . this is not rigorous: the splitting step is probabilistic, and we may get some “bad” splits
Quick and dirty analysis of Quick Sort

Idea: leverage our randomized Quick Select analysis

Imagine that \(L \) is sorted, and for each \(k = 1, \ldots, n \), we can consider the \(k \)th element \(x_k \) in the sorted list.

Let \(C_k \) be the number of levels at which \(x_k \) occurs in the recursion tree.

For \(j = 0, 1, \ldots \), let \(S_j := \) number of items at level \(j \)

\(W := \) number of comparisons \(\leq \sum_{j \geq 0} S_j \leq \sum_{k=1}^{n} C_k \)
Let C_k be the number of levels at which x_k occurs in the recursion tree.

For $j = 0, 1, \ldots$, let $S_j := \text{number of items at level } j$

$W := \text{number of comparisons} \leq \sum_{j \geq 0} S_j \leq \sum_{k=1}^{n} C_k$

Key observation: the distribution of C_k is precisely the same as the distribution of the recursion depth of QSelect(L, k) (plus 1)

Idea: from x_k’s point of view, we are just running QSelect(L, k)

Therefore: $\mathbb{E}[C_k] = O(\log n) \text{ for each } k$, and

$$\mathbb{E}[W] \leq \sum_{k=1}^{n} \mathbb{E}[C_k] = O(n \log n)$$
Expected Depth of Quick Sort Recursion

Let $D :=$ depth of the recursion tree for $QSort$ on inputs of length n

Theorem: $E[D] = O(\log n)$

Notes:

The $QSelect$ depth analysis does not apply — again,
$E[\max\{X, Y\}] \not\equiv \max\{E[X], E[Y]\}$

$E[D]$ can also be viewed as the average height of a randomly built binary search tree
The recursion tree in more detail . . .

\[N_i := \text{size of node } i \]
\[\mathcal{L}_j := \text{set of indices at level } j \]
\[T_j := \sum_{i \in \mathcal{L}_j} N_i^2 \]

The \(N_i \)'s and \(T_j \)'s are random variables

Claim: \(\mathbb{E}[T_j] \leq \left(\frac{2}{3} \right)^j n^2 \) for \(j = 0, 1, 2, \ldots \)
Proof of claim: \(\mathbb{E}[T_j] \leq (\frac{2}{3})^jn^2 \) for \(j = 0, 1, 2, \ldots \)

Let’s first prove that \(\mathbb{E}[T_1] \leq \frac{2}{3}n^2 \)

\[T_1 = N_2^2 + N_3^2 \]

Imagine the items are in \(L \) are sorted

Let \(R \) be the index of the pivot in the sorted list

\(R \) is uniformly distributed over \(\{1, \ldots, n\} \)

\(N_2 \leq R - 1 \) and \(N_3 \leq n - R \)

\[
\mathbb{E}[(R - 1)^2] = \sum_{i=1}^{n} (i - 1)^2/n = \frac{1}{n} \sum_{i=0}^{n-1} i^2
\]

\[
\leq \frac{1}{n} \int_{0}^{n} x^2 \, dx = \frac{1}{n} \cdot \frac{n^3}{3} = \frac{n^2}{3}
\]
The distribution of $n - R$ is the same as that of $R - 1$

Thus,

$$E[N_2^2] \leq n^2/3, \quad E[N_3^2] \leq n^2/3$$

and

$$E[T_1] = E[N_2^2] + E[N_3^2] \leq \frac{2}{3} n^2$$

More generally, consider any node i in the tree

“Law of total expectation”:

$$E[N_{2i}^2] = \sum_m E[N_{2i}^2 \mid N_i = m] \Pr[N_i = m]$$

$$\leq \sum_m (m^2/3) \Pr[N_i = m] = \frac{1}{3} E[N_i^2]$$

Similarly, $E[N_{2i+1}^2] \leq \frac{1}{3} E[N_i^2]$

This shows: $E[T_{j+1}] \leq \frac{2}{3} E[T_j]$ for $j \geq 0$
Implies claim: \(\mathbb{E}[T_j] \leq \left(\frac{2}{3}\right)^j n^2 \) for \(j \geq 0 \) (induction)

Tail sum formula: \(\mathbb{E}[D] = \sum_{j \geq 1} \mathbb{P}[D \geq j] \)

Observe: \(D \geq j \iff T_j \geq 1 \)

Markov: \(\mathbb{P}[T_j \geq 1] \leq \mathbb{E}[T_j] \leq \left(\frac{2}{3}\right)^j n^2 \)

A calculation almost identical to that for QSelect

Setting \(j_0 := \lceil \log_{3/2}(n^2) \rceil \):

\[
\mathbb{E}[D] = \sum_{j \geq 1} \mathbb{P}[D \geq j] = \sum_{j=1}^{j_0-1} \mathbb{P}[D \geq j] + \sum_{j=j_0}^{\infty} \mathbb{P}[D \geq j] \leq \log_{3/2}(n^2) + 3 = O(\log n)
\]
Since the work per level is $O(n)$, this gives another proof that the expected running time of $QSort$ is $O(n \log n)$

But . . . constants are suboptimal

Homework develops alternative analyses of $QSelect$ and $QSort$ with optimal constants