Selection
General problem: Given a list \(L \) of \(n \) keys, and
\(k \in [1..n] \), find \(k \)th smallest element in \(L \)

Special case: \(k = \lceil n/2 \rceil \) ... the median

One solution: sort the keys into increasing order, return
\(k \)th entry in the sorted list

This takes time \(O(n \log n) \)

We can do better: linear time!

- a randomized algorithm with expected running time
 \(O(n) \)
- a deterministic algorithm with running time \(O(n) \)
Quick Select: a randomized selection algorithm

\(QSelect(L, k) : \)

choose \(p \) from \(L \) \textbf{at random}
partition \(L \) into 3 sublists: \(L_{<p}, L_{=p}, L_{>p} \)

if \(k \leq \text{length}(L_{<p}) \) then
 return \(QSelect(L_{<p}, k) \)
else if \(k \leq \text{length}(L_{<p}) + \text{length}(L_{=p}) \) then
 return \(p \)
else \hspace{1em} \text{// } k > \text{length}(L_{<p}) + \text{length}(L_{=p})
 return \(QSelect(L_{>p}, k - \text{length}(L_{<p}) - \text{length}(L_{=p})) \)
Intuition:

we split the problem into two problems of “roughly equal” size (in linear time) and then solve one of them

reminds us of the recurrence $T(n) \leq T(n/2) + O(n)$

Master Theorem says: $T(n) = O(n)$

BUT . . . this is not rigorous: the splitting step is probabilistic, and we may get some “bad” splits
Let $W :=$ number of comparisons

Theorem. $E[W] = O(n)$

For $j = 0, 1, 2, \ldots$ let $N_j :=$ size of the subproblem at level j (or zero if none)

Claim. $E[N_j] \leq (\frac{3}{4})^j n$ and for each $j = 0, 1, 2, \ldots$

Using the claim:

$$W \leq N_0 + N_1 + \cdots$$

$$E[W] \leq E[N_0] + E[N_1] + \cdots$$

$$\leq n \sum_{j \geq 0} (\frac{3}{4})^j$$

$$= n \cdot \frac{1}{1 - \frac{3}{4}} = 4n$$
Proof of Claim.

\[N_0 = n \]

Let’s first prove that \(\mathbb{E}[N_1] \leq \frac{3}{4}n \)

Imagine the keys in \(L \) are sorted

Let \(R \) be the index of the pivot \(p \) in the sorted list

\(R \) is uniformly distributed over \(\{1, \ldots, n\} \)

\(\text{length}(L_{<p}) \leq R - 1 \) and \(\text{length}(L_{\geq p}) \leq n - R \)

\(\therefore N_1 \leq \max\{R - 1, n - R\} \)
A calculation . . .

Assume R uniform over \{1, \ldots, n\}

Want to show: $E[\max\{R - 1, n - R\}] \leq \frac{3}{4} n$

\textit{NOTE:} $E[\max\{X, Y\}] \neq \max\{E[X], E[Y]\}$

Proof by picture ($n = 8$):

expectation $\leq 1/n$ times shaded area:

$$\leq \frac{1}{n} \times \frac{3}{4} n^2 = \frac{3}{4} n$$
To recap: we have proved $E[N_1] \leq \frac{3}{4}n$

What about N_2? Use conditional expectation:

$$E[N_2] = \sum_{m} E[N_2 | N_1 = m] \Pr[N_1 = m]$$

same analysis as N_1

$$\leq \sum_{m} \left(\frac{3}{4} m \right) \Pr[N_1 = m]$$

$$= \frac{3}{4} \sum_{m} m \Pr[N_1 = m]$$

$$= \frac{3}{4} E[N_1] \leq \left(\frac{3}{4} \right)^2 n$$

By induction: $E[N_j] \leq (\frac{3}{4})^j n$ for $j = 0, 1, 2, \ldots$
Analysis of recursion depth

Let $D :=$ the depth of the recursion tree

Theorem: $E[D] = O(\log n)$

Tail sum formula: $E[D] = \sum_{j \geq 1} \Pr[D \geq j]

Observe: $D \geq j \iff N_j \geq 1$

Markov says: $\Pr[N_j \geq 1] \leq E[N_j] \leq (\frac{3}{4})^j n$
Set $j_0 := \lceil \log_{4/3} n \rceil$ // = least j such that $(\frac{3}{4})^j n \leq 1$

We have:

$$E[D] = \sum_{j \geq 1} \Pr[D \geq j]$$

$$= \sum_{j=1}^{j_0-1} \Pr[D \geq j] + \sum_{j=j_0}^{\infty} \Pr[D \geq j]$$

$$\leq (j_0 - 1) + \sum_{j=j_0}^{\infty} (\frac{3}{4})^j n$$

$$= (j_0 - 1) + ((\frac{3}{4})^{j_0} n) \sum_{j=j_0}^{\infty} (\frac{3}{4})^{j-j_0}$$

$$\leq \log_{4/3} n + 4$$
Practical aspects: a fast, in-place partitioning algorithm

An idea from Bentley & McIlroy (1993)

Two inner loops:
- moving b: scan over $<$, swap $=$, halt on $>$
- moving c: scan over $>$, swap $=$, halt on $<$

Swap elements b and c, $b++$, $c--$
Repeat until b crosses c

When finished, the $=$’s are swapped to the middle
Deterministic linear-time selection

Idea:

- divide L into $\approx n/5$ blocks of size 5
- sort each block, and compute median of each block
- let $M :=$ the list of medians (so $\text{length}(M) \approx n/5$)
- recursively find the median p of M
- use p as the pivot, and proceed as in Quick Select
Consider a single recursive invocation

Local cost is $O(n)$

Both $\text{length}(L_{<\rho})$ and $\text{length}(L_{>\rho})$ are $\leq \frac{7}{10}n + O(1)$

Two recursive calls:

- one of size at most $\frac{1}{5}n + O(1)$
- one of size at most $\frac{7}{10}n + O(1)$
Sum of subproblem sizes $\leq 0.9n + c$, for some constant c
Choose n_0 such that $0.9n + c \leq 0.91n$ for all $n \geq n_0$
Implementation: halt recursion when $n < n_0$
Let $s_j := \text{sum of problem sizes at level } j$, for $j = 0, 1, 2, \ldots$
We have $s_j \leq (0.91)^j n$ for $j = 0, 1, 2, \ldots$
Total cost is $O(w)$, where
\[
w := \sum_{j \geq 0} s_j \leq \sum_{j \geq 0} (0.91)^j n \leq \left(\frac{100}{9}\right)n\]