Probability Review

Basic definitions

Discrete probability distribution: a function $\Pr : \Omega \rightarrow [0, 1]$ such that $\sum_{\omega \in \Omega} \Pr(\omega) = 1$

- Ω called *sample space*
- a point $\omega \in \Omega$ represents the *outcome* of some experiment
- $\Pr(\omega)$ represents the probability of outcome ω
- Ω may be *finite* or *countably infinite*
Example: rolling a die. $\Omega = \{1, \ldots, 6\}$, $\Pr(\omega) = 1/6$ for all $\omega \in \Omega$

Example: uniform distribution. $|\Omega| = n$, $\Pr(\omega) = 1/n$ for all $\omega \in \Omega$

Example: Bernoulli trial. An experiment with two outcomes. Probability of “success” is p, probability of “failure” is $q := 1 - p$.
An **event** is a subset $A \subseteq \Omega$

The **probability of** A is $\Pr[A] := \sum_{\omega \in A} \Pr(\omega)$

Logical operations:

- $A \cap B$ — logical AND
- $A \cup B$ — logical OR
- $\Omega \setminus A$ — logical NOT

Union bounds:

- $\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]
- For any family of events $\{A_i\}_{i \in I}$:

$$\Pr\left[\bigcup_{i \in I} A_i \right] \leq \sum_{i \in I} \Pr[A_i]$$

and equality holds if the A_i’s are **pairwise disjoint**
Example (Alice and Bob)

Alice rolls two dice, and asks Bob to guess a value that appears on either of the two dice (without looking)

What is the probability that Bob guesses correctly?

Model: uniform distribution on \(\Omega := \{1, \ldots, 6\} \times \{1, \ldots, 6\} \)

For \((s, t) \in \Omega\): \(s = \) first die, \(t = \) second die

For \(k = 1, \ldots, 6\), define
- event \(A_k\) : first die = \(k\)
- event \(B_k\) : second die = \(k\)
- \(C_k := A_k \cup B_k\) (\(k\) appears on either die)

\[\Pr[A_k] = 6/36 = 1/6, \quad \Pr[B_k] = 6/36 = 1/6, \quad \Pr[A_k \cap B_k] = 1/36 \]

Therefore:

\[\Pr[C_k] = \Pr[A_k \cup B_k] = \Pr[A_k] + \Pr[B_k] - \Pr[A_k \cap B_k] = 1/6 + 1/6 - 1/36 = 11/36 \]

So no matter Bob’s guess, he is correct with probability \(11/36 < 1/3\)
Conditional probability and independence

Suppose \(\Pr[\mathcal{B}] \neq 0 \)

Define
\[
\Pr(\omega \mid \mathcal{B}) := \begin{cases}
\frac{\Pr(\omega)}{\Pr[\mathcal{B}]} & \text{if } \omega \in \mathcal{B}, \\
0 & \text{otherwise.}
\end{cases}
\]

\(\Pr(\cdot \mid \mathcal{B}) \) is a new probability distribution on \(\Omega \): the conditional distribution given \(\mathcal{B} \)

Intuition:

- we run an experiment
- we learn that \(\mathcal{B} \) occurs
- then \(\Pr(\cdot \mid \mathcal{B}) \) assigns new probabilities to all outcomes, reflecting this partial knowledge
For any event A:

$$\Pr[A \mid B] = \sum_{\omega \in A} \Pr(\omega \mid B) = \frac{\Pr[A \cap B]}{\Pr[B]}.$$

A and B are called **independent** if

- $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$,
- or equivalently, $\Pr[A] = \Pr[A \mid B]$

Intuition:

- we run an experiment
- we learn that B occurs
- then $\Pr[A \mid B]$ tells us how likely it is for A to occur, given this partial knowledge
- independence means: learning that B occurs tells us nothing about A
Back to Alice and Bob …

Suppose Alice tells Bob the sum of the two dice before he guesses. For example, suppose sum = 4. What is Bob’s best strategy?

For $\ell = 2, \ldots, 12$, define event D_ℓ: sum = ℓ

<table>
<thead>
<tr>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

$\Pr[C_1 | D_4] = (2/36)/(3/36) = 2/3$

$\Pr[C_2 | D_4] = (1/36)/(3/36) = 1/3$

$\Pr[C_3 | D_4] = (2/36)/(3/36) = 2/3$

$\Pr[C_4 | D_4] = \Pr[C_5 | D_4] = \Pr[C_6 | D_4] = 0$

Bob’s best choice: 1 or 3
Total probability

Suppose \(\{B_i\}_{i \in I} \) is a partition of \(\Omega \).

Let \(A \) be any event.

Law of total probability:

\[
\Pr[A] = \sum_{i \in I} \Pr[A \cap B_i] = \sum_{i \in I} \Pr[A | B_i] \Pr[B_i]
\]
Back to Alice and Bob . . .

Let us compute Bob’s overall winning probability

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

If the sum = 2 or = 12, Bob wins for sure

Suppose sum = ℓ, with 1 < ℓ < 12, and \(N_ℓ \) is the number of pairs with sum = ℓ

Bob can always choose a value that appears twice among these \(N_ℓ \) pairs (for example, Bob can choose 1 if \(ℓ \leq 7 \) and 6 if \(ℓ > 7 \))

Let \(C \) be the event that Bob wins

\[
\text{Total probability: } \Pr[C] = \sum_{ℓ=2}^{12} \Pr[C | D_ℓ] \Pr[D_ℓ]
\]
Alice and Bob (cont’d)

We have

\[\text{Pr}[C \mid D_2] \text{Pr}[D_2] = 1 \cdot \frac{1}{36} = \frac{1}{36} \]
\[\text{Pr}[C \mid D_{12}] \text{Pr}[D_{12}] = 1 \cdot \frac{1}{36} = \frac{1}{36} \]

For \(\ell = 3, \ldots, 11 \), we have

\[\text{Pr}[C \mid D_\ell] \text{Pr}[D_\ell] = \frac{2}{N_\ell} \cdot \frac{N_\ell}{36} = \frac{1}{18} \]

Therefore,

\[\text{Pr}[C] = \frac{1}{36} + \frac{1}{36} + \frac{9}{18} = \frac{10}{18} \]
Random variables

A random variable taking values in a set S:

$$X : \Omega \rightarrow S$$

For $s \in S$, the event “$X = s$” is $\{\omega \in \Omega : X(\omega) = s\}$, and

$$\Pr[X = s] = \sum_{\omega \in \Omega : X(\omega) = s} \Pr(\omega)$$

Building new random variables:

- $Y = f(X)$ means $Y(\omega) = f(X(\omega))$ for all $\omega \in \Omega$
- $Z = X + Y$ means $Z(\omega) = X(\omega) + Y(\omega)$ for all $\omega \in \Omega$
A random variable X taking values in S defines a probability distribution on S:

$$\Pr_X(s) = \Pr[X = s]$$

For an event \mathcal{A}, we can define the indicator variable:

$$X_\mathcal{A}(\omega) := \begin{cases}
1 & \text{if } \omega \in \mathcal{A}, \\
0 & \text{otherwise}
\end{cases}$$
Alice and Bob again . . .

X is the value of the first die
- X is uniformly distributed over $\{1, \ldots, 6\}$

Y is the value of the second die
- Y is uniformly distributed over $\{1, \ldots, 6\}$

Define $Z := X + Y$

Define W to be the indicator for the event that $X = 1$ or $Y = 1$
- $\Pr[W = 1] = 11/36$, $\Pr[W = 0] = 1 - 11/36 = 25/36$
Independent random variables

X takes values in S, Y takes values in T

X and Y are called **independent** if

$$\Pr[(X = s) \cap (Y = t)] = \Pr[X = s] \cdot \Pr[Y = t]$$

for all $s \in S$ and $t \in T$

Equivalently,

$$\Pr[X = s \mid Y = t] = \Pr[X = s]$$

for all $s \in S$ and $t \in T$

Intuition: learning the value of Y gives us no information about the value of X
Alice and Bob again . . .

X is the value of the first die

Y is the value of the second die

$Z := X + Y$

X and Y are independent

X and Z are not independent

Y and Z are not independent
Example: *sum mod m.*

Suppose X and Y are independent random variables, with each uniformly distributed over \mathbb{Z}_m.

This means that (X, Y) is uniformly dist’d over $\mathbb{Z}_m \times \mathbb{Z}_m$.

Set $Z := X + Y$.

Claim: Z is uniformly distributed over \mathbb{Z}_m.

- Why? For each $\alpha \in \mathbb{Z}_m$, there are m solutions $(s, t) \in \mathbb{Z}_m \times \mathbb{Z}_m$ to the equation $s + t = \alpha$.

Claim: X and Z are independent.

Let $\alpha, \beta \in \mathbb{Z}_m$ be fixed.

Want to show $\Pr[(X = \alpha) \cap (Z = \beta)] = 1/m^2$.

$$
\Pr[(X = \alpha) \cap (Z = \beta)] = \Pr[(X = \alpha) \cap (X + Y = \beta)]
$$

$$
= \Pr[(X = \alpha) \cap (X + (\beta - \alpha))]
$$

$$
= \Pr[X = \alpha] \cdot \Pr[Y = \beta - \alpha] \quad (X, Y \text{ indep.})
$$

$$
= (1/m) \cdot (1/m) = 1/m^2
$$
Example: one-time pad.

Suppose X and Y are independent random variables, where Y is uniformly distributed over \mathbb{Z}_m

X may have an arbitrary distribution

Set $Z := X + Y$

Fact: X and Z are independent

Application to cryptography

Suppose Y represents an encryption key shared between Alice and Bob

Alice encrypts a message X by computing the ciphertext $Z = X + Y$ and sends Z over an insecure network

Bob can decrypt the ciphertext by computing $X = Z - Y$

Independence of Z and X ensures that an eavesdropper who only learns the value of the ciphertext Z learns nothing about the message X
Mutual and k-wise independence

Let $\{X_i\}_{i \in I}$ be a finite family of random variables.

Let us call a corresponding family of values $\{s_i\}_{i \in I}$ an assignment to $\{X_i\}_{i \in I}$ if s_i is in the image of X_i for each $i \in I$.

$\{X_i\}_{i \in I}$ is called mutually independent if for every assignment $\{s_i\}_{i \in I}$ to $\{X_i\}_{i \in I}$, we have

$$\Pr\left[\bigcap_{i \in I} (X_i = s_i)\right] = \prod_{i \in I} \Pr[X_i = s_j].$$

For $k \leq |I|$, we say that $\{X_i\}_{i \in I}$ is k-wise independent if $\{X_j\}_{j \in J}$ is mutually independent for every subset $J \subseteq I$ of size k.

We say $\{X_i\}_{i \in I}$ is pairwise independent if it is 2-wise independent.
Example: *sum mod m.*

Suppose X and Y are independent random variables, with each uniformly distributed over \mathbb{Z}_m.

Set $Z := X + Y$.

We saw that Z is uniformly distributed over \mathbb{Z}_m and that X and Z are independent.

Same argument shows Y and Z are independent.

It follows that X, Y, Z are pairwise independent.

However, they are not mutually independent:

$$\Pr[(X = 0) \cap (Y = 0) \cap (Z = 1)] = 0 \neq \frac{1}{m^3}$$
Fact: If \(\{X_i\}_{i \in I} \) is \(k \)-wise independent, then it is also \(\ell \)-wise independent for any \(\ell < k \)

Fact: Let \(\{X_i\}_{i=1}^n \) be a family of random variables, where each \(X_i \) takes values in a finite set \(S_i \)

Then the following are equivalent:

(i) \((X_1, \ldots, X_n) \) is uniformly distributed over \(S_1 \times \cdots \times S_n \)

(ii) \(\{X_i\}_{i=1}^n \) is mutually independent and each \(X_i \) is uniformly distributed over \(S_i \)

Fact: Suppose \(\{X_i\}_{i=1}^n \) is a mutually independent family of random variables

Further, suppose that for \(i = 1, \ldots, n \), we have \(Y_i = g_i(X_i) \) for some function \(g_i \)

Then \(\{Y_i\}_{i=1}^n \) is mutually independent
Example: *k-wise independence from polynomial evaluation.*

Let p be a prime

Choose a random polynomial $G \in \mathbb{Z}_p[x]$ of degree less than k

For each $\gamma \in \mathbb{Z}_p$, $G(\gamma)$ is the value of G at γ

Claim: $\{G(\gamma)\}_{\gamma \in \mathbb{Z}_p}$ is a k-wise independent family of random variables, with each $G(\gamma)$ uniformly distributed over \mathbb{Z}_p

This follows from Lagrange interpolation:

Let $\gamma_1, \ldots, \gamma_k \in \mathbb{Z}_p$ be fixed, distinct evaluation points

Lagrange interpolation says the map

$$(a_0, \ldots, a_{k-1}) \mapsto (g(\gamma_1), \ldots, g(\gamma_k)), \text{ where } g := \sum_j a_j x^j \in \mathbb{Z}_p[x]$$

is bijective

Therefore, a random coefficient vector maps to a random evaluation vector

Note: $\{G(\gamma)\}_{\gamma \in \mathbb{Z}_p}$ is not $(k + 1)$-wise independent

Again, Lagrange interpolation: the values of G at k distinct evaluation points completely determine G, and hence the value of G at any other evaluation point.
Example (cont’d): *Threshold secret sharing.*

Alice has a secret \(\sigma \in \mathbb{Z}_p \)

She computes a random polynomial \(G \in \mathbb{Z}_p[X] \) of degree less than \(k \)

She sets \(H := G + \sigma x^k \in \mathbb{Z}_p[X] \)

She computes “secret shares” \(S_i = H(\gamma_i) \) for \(i = 1, \ldots, n \), where \(\gamma_1, \ldots, \gamma_n \in \mathbb{Z}_p \) are distinct, fixed evaluation points

Fact: the \(S_i \)’s are \(k \)-wise independent, and each \(S_i \) is uniformly distributed over \(\mathbb{Z}_p \), but any \(k + 1 \) shares determine \(H \) (and hence \(\sigma \))

Alice backs up her secret by storing the \(S_i \)’s “in the cloud” on \(n \) different servers

Any coalition of \(k \) or fewer servers learn nothing about her secret

Alice can reconstruct her secret from any \(k + 1 \) shares

Other applications: nuclear launch codes (used by Russia in the 1990’s)
Example: Binomial distribution.

Suppose we perform n independent experiments, where each experiment succeeds with probability p and fails with probability $q := 1 - p$

Let $X_i = 1$ if ith experiment succeeds, and 0 otherwise

The family $\{X_i\}_{i=1}^n$ is mutually independent

Define $X := \sum_{i=1}^n X_i$

For $k = 0 \ldots n$, we have

$$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}$$

This is called the **binomial distribution**, and is parameterized by p and n
Example: *Geometric distribution.*

Suppose we repeatedly perform independent experiments, where each experiment succeeds with probability p and fails with probability $q := 1 - p$.

Let X be the number of experiments we perform until one succeeds.

For $k = 1, 2, \ldots$

$$\Pr[X = k] = q^{k-1} p$$

This is called the **geometric distribution**, and is parameterized by p.
Expectation

If X is a real-valued random variable:

$$E[X] := \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)$$

If X has image S:

$$E[X] = \sum_{s \in S} s \cdot \Pr[X = s]$$

More generally, if X takes values in S and $f : S \to \mathbb{R}$:

$$E[f(X)] = \sum_{s \in S} f(s) \cdot \Pr[X = s]$$

Note: $E[X]$ well-defined even for infinite Ω, assuming absolute convergence
Linearity of expectation

Theorem: if X and Y are real-valued random variables and $a \in \mathbb{R}$, then

$$E[X + Y] = E[X] + E[Y] \quad \text{and} \quad E[aX] = aE[X]$$

More generally, if $\{X_i\}_{i \in I}$ is a family of real-valued random variables:

$$E \left[\sum_{i \in I} X_i \right] = \sum_{i \in I} E[X_i]$$

Note: holds even for infinite families, assuming each $X_i \geq 0$ and $\sum_i X_i(\omega)$ converges for each $\omega \in \Omega$
Example: uniform distribution.

X is uniformly distributed over $\{1, \ldots, n\}$:

$$E[X] = \sum_{i=1}^{n} i \cdot \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

Example: Bernoulli distribution.

$X = 1$ with probability p, $X = 0$ with probability $q := 1 - p$:

$$E[X] = 1 \cdot p + 0 \cdot q = p$$

Example: Indicator variable.

$X_A = 1$ with probability $\Pr[A]$, $X_A = 0$ with probability $1 - \Pr[A]$:

$$E[X_A] = \Pr[A]$$
Example: Binomial distribution.

Recall: \(X = \sum_{i=1}^{n} X_i \)

For \(k = 0 \ldots n \), we have

\[
\Pr[X = k] = \binom{n}{k} p^k q^{n-k}
\]

So, \(E[X] = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k} \ldots ! ! ? @##? !

Linearity!!

\[
E[X] = \sum_{i=1}^{n} E[X_i] = np
\]
The tail sum formula

Theorem: If X is a random variable that takes non-negative integer values, then

$$E[X] = \sum_{i\geq 1} \Pr[X \geq i]$$

Proof by picture. Let $p_i = \Pr[X = i]$:

$$
p_1
p_2\quad p_2
p_3\quad p_3\quad p_3
\vdots\quad \vdots\quad \vdots \quad \ddots
$$

ith row sums to $i \Pr[X = i]$

ith column sums to $\Pr[X \geq i]$
Example: Geometric distribution.

For $k = 1, 2, \ldots$

$$\Pr[X = k] = q^{k-1}p$$

Compute: $E[X] = \sum_{k \geq 1} kq^{k-1}p \ldots$?! $#&##^@!$

Use the tail sum formula — observe

$$\Pr[X \geq i] = q^{i-1}$$

Therefore,

$$E[X] = \sum_{i \geq 1} \Pr[X \geq i] = \sum_{i \geq 1} q^{i-1} = \frac{1}{1-q} = \frac{1}{p}$$
Example: *expected minimum.*

We roll four dice. For $i = 1, \ldots, 4$, let X_i be the value of the ith die.

So X_1, \ldots, X_4 is a mutually independent family of random variables, where each X_i is uniformly distributed over $\{1, \ldots, 6\}$.

Let $M := \min(X_1, \ldots, X_4)$.

Tail sum formula:

$$E[M] = \sum_{j=1}^{6} \Pr[M \geq j].$$

$M \geq j$ occurs $\iff X_i \geq j$ for all $i = 1, \ldots, 4$.

By independence, we have

$$\Pr[M \geq j] = \Pr[X_1 \geq j] \cdot \Pr[X_4 \geq j] = \left(\frac{7-j}{6}\right)^4$$

So we have

$$E[M] = \sum_{j=1}^{6} \Pr[M \geq j] = \frac{6^4 + 5^4 + 4^4 + 3^4 + 2^4 + 1^4}{6^4} \approx 1.75.$$
Conditional expectation

Let B be an event with $\Pr[B] \neq 0$

Let X be a real-valued random variable

We can calculate the expectation of X with respect to the conditional distribution given B:

$$E[X \mid B] = \sum_{\omega \in \Omega} X(\omega) \Pr(\omega \mid B)$$

Law of total expectation: If $\{B_i\}_{i \in I}$ be a partition of Ω, then

$$E[X] = \sum_{i \in I} E[X \mid B_i] \Pr[B_i]$$
Example: We roll a die
Let X denote the value of the die
Let \mathcal{A} be the event that the value is even
The distribution of X given \mathcal{A} is the uniform distribution on $\{2, 4, 6\}$, so

$$E[X | \mathcal{A}] = \frac{2 + 4 + 6}{3} = 4$$

The distribution of X given $\overline{\mathcal{A}}$ is the uniform distribution on $\{1, 3, 5\}$, so

$$E[X | \overline{\mathcal{A}}] = \frac{1 + 3 + 5}{3} = 3$$

So we have

$$E[X] = E[X | \mathcal{A}] \Pr[\mathcal{A}] + E[X | \overline{\mathcal{A}}] \Pr[\overline{\mathcal{A}}]$$

$$= 4 \cdot \frac{1}{2} + 3 \cdot \frac{1}{2} = \frac{7}{2}$$
Expectation of products

Theorem: If X and Y are independent real-valued random variables, then

$$E[X \cdot Y] = E[X] \cdot E[Y]$$

Example: Let X_1 and X_2 be independent random variables, each uniformly distributed over $\{0, 1\}$. Set $X := X_1 + X_2$

$$E[X] = E[X_1] + E[X_2] = 1/2 + 1/2 = 1$$

$$E[X^2] = E[(X_1 + X_2)(X_1 + X_2)]$$

$$= E[X_1^2] + 2E[X_1]E[X_2] + E[X_2^2]$$

$$= 1/2 + 2 \cdot (1/4) + 1/2 = 3/2$$

Observe: $3/2 = E[X^2] > E[X]^2 = 1$
Some basic inequalities

Jensen’s inequality (special case): If X is a real-valued random variable, then
$$E[X^2] \geq E[X]^2$$

Markov’s inequality: If X takes only non-negative real values, then for every $\alpha > 0$, we have
$$\Pr[X \geq \alpha] \leq E[X]/\alpha$$

Setting $\mu := E[X]$ and plugging in $\alpha := \beta \mu$, we obtain
$$\Pr[X \geq \beta \mu] \leq 1/\beta$$