Hashing (2)
Recall: Universal Hashing

Let $\mathcal{H} = \{ h_\lambda \}_{\lambda \in \Lambda}$ be a family of hash functions from \mathcal{U} to \mathcal{V}.

$m := |\mathcal{V}|$

Def’n: \mathcal{H} is called **universal** if for all $a, b \in \mathcal{U}$ with $a \neq b$,

$$|\{ \lambda \in \Lambda : h_\lambda(a) = h_\lambda(b) \}| \leq \frac{|\Lambda|}{m}.$$

Probabilistic interpretation: If R is a random variable, uniformly distributed over Λ, then

$$\Pr[h_R(a) = h_R(b)] \leq \frac{1}{m}. $$
A universal family

Let m be a prime, and t a positive integer

Define $\mathcal{U} := \mathbb{Z}_m^t$, $\Lambda := \mathbb{Z}_m^t$, $\mathcal{V} := \mathbb{Z}_m$

For $\lambda = (\lambda_1, \ldots, \lambda_t) \in \Lambda$, $a = (a_1, \ldots, a_t) \in \mathcal{U}$, define

$$h_\lambda(a) := \sum_{i=1}^{t} a_i \lambda_i$$

Define

$$\mathcal{H} := \{h_\lambda\}_{\lambda \in \Lambda}$$

Theorem: \mathcal{H} is universal
Proof of theorem.

Suppose \((a_1, \ldots, a_t) \neq (b_1, \ldots, b_t)\)

We want to count the number \(N\) of solutions \((\lambda_1, \ldots, \lambda_t)\)

to the equation

\[
\sum_i a_i \lambda_i = \sum_i b_i \lambda_i.
\]

Re-write this as

\[
\sum_i c_i \lambda_i = 0
\]

where \(c_i := a_i - b_i\)

By assumption, not all \(c_i\)'s are zero

Want to show: \(N \leq |\Lambda|/m = m^{t-1}\)
Proof (cont’d).

Let N be the number of solutions $(\lambda_1, \ldots, \lambda_t)$ to

$$\sum_i c_i \lambda_i = 0,$$

where some $c_j \neq 0$

Want to show: $N \leq |\Lambda|/m = m^{t-1}$

Without loss of generality, assume $c_1 \neq 0$

For every choice of $\lambda_2, \ldots, \lambda_t$, there is a unique λ_1 such that $\sum_i c_i \lambda_i = 0$, namely,

$$\lambda_1 = -c_1^{-1} \sum_{i=2}^t c_i \lambda_i$$

There are m^{t-1} ways of choosing $\lambda_2, \ldots, \lambda_t$, and each yields one solution

So $N = m^{t-1}$

QED
Practical considerations

Key space:

• Suppose keys are ASCII character strings of fixed length t
• So each key is a tuple (a_1, \ldots, a_t), with each $a_i \in [0..256)$
• Choose a prime $m > 256$, so $a_i \mod m = a_i$
• Variable length keys (padding)
Practical considerations (cont’d)

Slot space: choice of prime m

Bertrand’s Postulate: There is always a prime between x and $2x$ for all integers $x \geq 1$

Chebyshev said it
So I’ll say it again
There’s always a prime between N and $2N$

Dynamically growing the table: when n/m gets too large, choose a new $m’ \geq 2m$, and rehash everything
Another universal family

Let p be a prime, and m a positive integer

Define $\mathcal{U} := \{0, \ldots, p - 1\}$,
$\Lambda := \{1, \ldots, p - 1\} \times \{0, \ldots, p - 1\}$,
$\mathcal{V} := \{0, \ldots, m - 1\}$

For $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, $a \in \mathcal{U}$, define

$$h_{\lambda}(a) := \left((\lambda_1 a + \lambda_2) \mod p\right) \mod m$$

Theorem: $\mathcal{H} := \{h_{\lambda}\}_{\lambda \in \Lambda}$ is universal (see text)

Pros: free choice of m

Cons: multiplication of large numbers
General problem: large hash function index space — almost as large as the key space

Solution: weaker (but still useful) hashing requirements
ε-universal Hashing

Let $\mathcal{H} = \{h_\lambda\}_{\lambda \in \Lambda}$ be a family of hash functions from U to V

Def’n: Let $0 \leq \varepsilon \leq 1$. \mathcal{H} is called **ε-universal** if for all $a, b \in U$ with $a \neq b$,

$$\left| \{\lambda \in \Lambda : h_\lambda(a) = h_\lambda(b)\} \right| \leq \varepsilon \cdot |\Lambda|.$$

Probabilistic interpretation: if R is a random variable, uniformly distributed over Λ, then

$$\Pr[h_R(a) = h_R(b)] \leq \varepsilon$$

universal $= (1/m)$-universal, where $m := |V|$
Using ϵ-universal hash families

As long as ϵ is not too big, many of the results we proved have useful analogs.

E.g., in a table with at most n keys

• expected cost of each dictionary operation in a table containing n keys is $\leq 1 + \epsilon n$.

• expected value of maximum load is $\leq \sqrt{\epsilon n^2} + n$
An ε-universal family

Let m be a prime, and t a positive integer.

Define $\mathcal{U} := \mathbb{Z}_m^t$, $\Lambda := \mathbb{Z}_m$, $\mathcal{V} := \mathbb{Z}_m$.

For $\lambda \in \Lambda$, $a = (a_0, a_1, \ldots, a_{t-1}) \in \mathcal{U}$, define

$$h_\lambda(a) := \sum_{i=0}^{t-1} a_i \lambda^i$$

Define

$$\mathcal{H} := \{ h_\lambda \}_{\lambda \in \Lambda}$$

Theorem: \mathcal{H} is $(t-1)/m$-universal.
Proof. Suppose \((a_0, \ldots, a_{t-1}) \neq (b_0, \ldots, b_{t-1})\)

We want to count the number \(N\) of solutions \(\lambda\) to the equation

\[
\sum_i a_i \lambda^i = \sum_i b_i \lambda^i.
\]

Re-write this as

\[
\sum_i c_i \lambda^i = 0
\]

where \(c_i := a_i - b_i\)

\(N = \#\) roots of \(\sum_i c_i x^i\), which is a non-zero polynomial of degree at most \(t - 1\)

\[N \leq t - 1 = (t - 1)/m \cdot m. \quad \text{QED} \]
Another ε-universal hash

More flexible choice of index space and slot space

Let m be a positive integer, $p \geq m$ be a prime, and t a positive integer

Define $\mathcal{U} := [0 \ldots m)^{\leq t}$, $\Lambda := [0 \ldots p)$, $\mathcal{V} := [0 \ldots m)$

For $\lambda \in \Lambda$, $a = (a_1, a_2, \ldots, a_\ell) \in \mathcal{U}$, where $0 < \ell \leq t$, define

$$h_\lambda(a) := \left((\lambda^\ell + a_1\lambda^{\ell-1} + \cdots + a_{\ell-1}\lambda) \mod p \right) + a_\ell \mod m$$

(empty string maps to 0)

Fact: $\{h_\lambda\}_{\lambda \in \Lambda}$ is $4t/m$-universal (exercise)
Pairwise Independent Hashing: a stronger notion

Let $\mathcal{H} = \{h_\lambda\}_{\lambda \in \Lambda}$ be a family of hash functions from U to V

$m := |V|$

We will assume that $|U| > 1$

Def’n: \mathcal{H} is called **pairwise independent** if for all $a, b \in U$ with $a \neq b$, and for all $r, s \in V$, we have

$$|\{\lambda \in \Lambda : h_\lambda(a) = r \text{ and } h_\lambda(b) = s\}| = \frac{|\Lambda|}{m^2}.$$
Probabilistic interpretation

Let R be a random variable, uniformly dist'd over Λ

For each $a \in \mathcal{U}$, define the random variable $V_a := h_R(a)$

Fact: The family of random variables $\{V_a\}_{a \in \mathcal{U}}$ is pairwise independent, with each V_a uniformly distributed over \mathcal{V}
A pairwise independent family

Let m be a prime, and t a positive integer

Define $\mathcal{U} := \mathbb{Z}_m^t$, $\Lambda := \mathbb{Z}_m^{t+1}$, $\mathcal{V} := \mathbb{Z}_m$

For $\lambda = (\lambda_0, \lambda_1, \ldots, \lambda_t) \in \Lambda$, $a = (a_1, \ldots, a_t) \in \mathcal{U}$, define

$$h_\lambda(a) := \lambda_0 + \sum_{i=1}^{t} a_i \lambda_i$$

Define

$$\mathcal{H} := \{ h_\lambda \}_{\lambda \in \Lambda}$$

Fact: \mathcal{H} is pairwise independent (Exercise)
Application: message authentication

Alice and Bob share a random hash index R

Later, Alice sends a message M to Bob, together with a hash code $C := h_R(M)$

An adversary can try to fool Bob, by replacing Alice’s message M with a message $M' \neq M$, and replacing the hash code C' such that $h_R(M') = C'$

Here, M' and C' are functions of M and C

Pairwise independent hashing implies

\[
\Pr[M' \neq M \text{ and } h_R(M') = C'] \leq \frac{1}{m}
\]

Intuition: the hash code $h_R(M)$ reveals nothing about the hash code $h_R(M')$