1. (5 points) Circle the correct answer among the choices given. If you circle more than one answer, you will lose the grade of the corresponding question.

(A) Virtual memory gives the illusion of:
 a. bigger memory b. faster memory
 b. bigger disk d. all of the above

(B) How many times does the following instruction result in level 1 cache access:
 movq (%rax), %rbx
 a. 1 b. 0 c. Depends on the cache size. d. We cannot tell.

(C) All the following cache memories have the same number of blocks, and the same block size. Which of the following has the least number of sets?
 a. 4-way set associative b. 2-way set associative
 c. Direct mapped d. they all have the same number of sets

(D) Not coalescing blocks after free() in dynamic memory allocator may result in:
 a. external fragmentation b. internal fragmentation
 c. page fault d. exception

(E) The dynamic memory allocator when implementing malloc() and free() uses:
 a. virtual address b. physical address
 c. depends on the design
2. [8 points] Given the following x86_64 assembly code, fill-in the blanks in the corresponding C code. Also on the far right, fill in the correspondence between each register and its corresponding variable in C. (Hint: you can neglect edx because it does not correspond to any variable in the C code and is used only by the compiler for the translation)

```
foo: xorl %eax, %eax
    movl %edi, %ebx
    sall $1, %ebx
L3: cmpl %edi, %ebx
    jle L0
    testl $1, $ebx
    jne L1
    addl $2, %eax
    jmp L2
L1: addl $3, %eax
L2: subl $1, %ebx
    jmp L3
L0: ret
```

```
int foo(int x){
    int sum = _________;
    int i;
    i = ____________;
    while (___________){
        if (i%2 == 0)
            ____________;
        else
            ____________;
        i--;
    }
    return sum;
}
```

<table>
<thead>
<tr>
<th>edi</th>
<th>ebx</th>
<th>eax</th>
</tr>
</thead>
</table>

3. [3 points] State three advantages of virtual memory:

•

•

•
4. Suppose that we have a system with main memory access time of 100 cycles. We added to that system a cache with 2 cycles access time. The resulting average memory access time becomes 22.

a. [2 points] What is the cache hit rate?

b. [2 points] Did we benefit from having a cache in that case? Why?

c. [1 point] Is the cache mentioned above accessed with virtual address? or physical address?

d. [1 point] Is the memory mentioned above accessed with virtual address? or physical address?
5. Given the following cache: each row is a set, the very first row is set 0, and each block consists of valid bit (V), Tag, and data (the block itself). The TAG value shows how many bits we need for the tag. Assume the address length is 32 bits. For this problem, you can neglect the content of the data.

<table>
<thead>
<tr>
<th>V</th>
<th>TAG</th>
<th>Data</th>
<th>V</th>
<th>Tag</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0xABCDEF</td>
<td></td>
<td>1</td>
<td>0x123456</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0xABCDEF</td>
<td></td>
<td>1</td>
<td>0x56789A</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0x56789A</td>
<td></td>
<td>0</td>
<td>0xABCDEF</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0x456789</td>
<td></td>
<td>0</td>
<td>0x123456</td>
<td></td>
</tr>
</tbody>
</table>

a. [1 point] How many bits do we need for the set part of the address?

b. [2 points] What is the block size? You have all the information you need! So, no assumptions are needed! To get full credit, you HAVE to show all steps.

c. [1 point] From the content of the cache above, how many blocks currently exist in the cache?

d. [1 point] Show how the 32 bits are divided into TAG, Set, and Index. Show all the steps and include the number of bits in the space below.

<table>
<thead>
<tr>
<th>TAG</th>
<th>SET</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>num bits =</td>
<td>num bits =</td>
<td>num bits =</td>
</tr>
</tbody>
</table>

e. [3 points] For the following address: 0xABCDEF80 do we have a cache hit or miss? If it is a hit, what is the set number? If it is a miss, do we have to use a replacement policy?