Problem Set 7

Assigned: Nov. 20
Due: Nov. 29

Problem 1

Consider the problem of sorting the following array (length=14):

\[[42, 6, 69, 17, 14, 38, 75, 52, 2, 11, 8, 56, 17, 85] \]

a. Produce a trace of mergesort working on this array. Use the in-place version of mergesort, and produce a trace in the style of Example 2 in the class notes on mergesort. Assume that smallSize=4.

b. Produce a trace of quicksort working on this array. Use the in-place version of quicksort, and produce a trace in the style of Example 2 in the class notes on quicksort. Assume that smallSize=4.

Note: it is much easier to generate these traces using a text editor, where you can use copy/paste, than to write them out by hand. However, be careful to avoid copy/paste errors.

Problem 2

Let us say that an array \(a \) of length \(n \) is almost sorted with errors of distance \(k \) for \(k < n \) if, for any \(i, j \), if \(j > i + k \) then \(a[j] \geq a[i] \). Thus, the array does not have to be completely ordered, but any two elements in the array that are out of order cannot be more than \(k \) places apart. For example, the array

\[[50, 80, 70, 60, 150, 120, 110, 200, 160, 250, 300, 350, 320] \]

is almost sorted with errors of distance 2. For example \(a[3] = 60 \) is less than \(a[1] = 80 \), and \(3 - 1 = 2 \), but there are no elements out of order that are 3 or more steps apart.

a. Show how quicksort can be modified to produce a list that is almost sorted with errors of size \(k \).

b. If the input array is almost sorted with errors of size \(k \), what is the running time of insertion sort, as a function of \(k \) and \(n \)? Explain your answer.

Problem 3

In a different sense, we can say that an numerical array \(a \) is almost sorted with errors of size \(d \), if, for all indices \(j > i \), \(a[j] \leq a[i] + d \). For instance, the same array from problem 2 is almost sorted with errors of size 40, since \(a[7]=200 \) and \(a[8]=160 \) but no two elements that are out of order have a difference greater than 40.

Suppose that the keys are all floating point numbers between two bounds \(b \) and \(t \). Assume that \(d \gg (t-b)/n \). Show how bucket sort (my bucket sort, not GTG’s) can be modified to sort the keys efficiently.
Problem 4

Suppose that you are given the problem of returning in sorted order the k smallest elements in an array of size n, where k is much smaller than n, but much larger than 1.

Describe how quicksort can be adapted to this problem. Your description need not give the pseudo-code for the modified algorithms; it is enough simply to describe what changes can be made, as long as your description is clear.

Problem 5

Consider the problem of finding the kth smallest element in an array.

This problem can be solved by an algorithm of a similar structure to quicksort as follows. We will use a recursive method $\text{findKth}(a, l, u, k)$ which looks between indices l and u for the kth smallest element of a.

We can write findKth as follows:

```c
findKth(a, l, u, k) {
    if (k < l || k > u) raise error;   // invalid value of k
    if (l==u) return a[l];           // base case
    m = partition(a, l, u);
    if (???) return a[m];            
    else if (???)
        return findKth(a,???,???,???); // search in the first part
    else
        return findKth(a,???,???,???); // search in the second part
}
```

The partition function here is the same one as in the usual quicksort. It returns the index in a where the pivot ends up.

Fill in the question marks in the code above.