The Shape of an Object

Optimizing for space and time in IBM’s J9 Java VM

Peter Burka
peter.burka@twosigma.com
December 11, 2014

JS

 |IBM'’s Java virtual machine =
* Cleanroom implementation " Wicro Emirormont
* Originally an embedded JVM /(
=’
* Used by thousands of IBM customers E;

POWERED

* Disclaimer: I’'m not speaking on behalf of IBM or Two Sigma

Objects

* Object = a value stored in memory
* Design questions:
— Interoperability (ABI)
— |dentity and mutability (==, =
— Dynamic vs. static shape
— Size / Speed
— Subtyping / multiple inheritance
— Reflection
— Architectural considerations (e.g. alignment)

Some options

e Dictionaries (Python, Javascript)
— Completely dynamic
e 2-Tuples (Lisp)
— Uniformly size
e Contiguous structs (C, C++, Fortran, Java)

— Space and time efficient
— Shape known early

A conjecture...

WEAK: STRONG:
EVERY ODD NUMBER EVERY EVEN NUMBER
GREATER THAN 5 ISTHE GREATER THAN 2 ISTHE
SUM OF THREE PRIMES SUM OF TWO PRIMES

WERK: STRONG:
EVERY NUMBER GREATER
THAN 7 15 THE S0M OF GOLDBACH RO
WOOMRNIBERS | (ONTECTURES
EAREMELY EXTREVELY
WEAK: STRONG:
NUMBERS JUST THERE ARE NO

KEEP oG NUMBERS ABOVE 7

http://xkcd.com/1310/

A conjecture...

* All objects are strings

A conjecture...

* All objects are strings
* And the remainder are arrays.

A Java string

_class (j.1.String) _class ([C)
flags flaes
-6 _ header a8
_hashcode (24 bytes) _hashcode _ header
(28 bytes)
_monitor _monitor
size) _length
offset ‘b -
hashcode ‘e’
(padding) ‘I
data ‘I
IOI
(48 bytes)
(pad)

=1byte (40 bytes)

Can we make these smaller?

Should Can we make these smaller?

* RAM is cheap

Should Can we make this smaller?

Should Can we make these smaller?

* Cacheis not cheap
— No significant size increase in 10 years
— (when measured per thread)

Gallatin (‘04) 512K 4.0M
Haswell ("14) 32K 128K 1.5M 128G

(cache sizes are per-thread)

A Java string

_class (j.1.String) _class ([C)
flags flaes
-6 _ header a8
_hashcode (24 bytes) _hashcode _ header
(28 bytes)
_monitor _monitor
size) _length
offset ‘b -
hashcode ‘e’
(padding) ‘I
data ‘I
IOI
(48 bytes)
(pad)

(40 bytes)

Step 1: compress pointers

e Use 32-bit pointers for
— Class pointer
— Monitor pointer
— Object pointers

Compress pointers

* Limited to 4GB space?

— Classes, monitors & objects can each have own
space

— Exploit alignment

4 bytes 16 GB
8 bytes 32GB
16 bytes 64 GB

32 bytes? 128 GB

Compress pointers

def decompress (comp ptr)
1f (comp ptr == 0)
return NULL;
else

return base + (comp ptr << scale);

Compress pointers

def decompress (comp ptr)
#if (base == 0)
return comp ptr << bits;
#else
1f (comp ptr == 0)
return NULL;
else
return base + (comp ptr << scale);

#fendif
}

_class (j.1.String)
_flags
__hashcode
_monitor

Size

offset

hashcode
(padding)

data

(48 bytes)

Before

— header

_class ([C)
_flags
_hashcode
_monitor
_length

‘H

‘o’

o

o

(.7

0]

(40 bytes)

_ header

After

_class _class
_flags _flags
_hashcode - header _hashcode . header
_monitor _monitor
Size - _length
offset ‘H’ .
hashcode ‘e’
data ‘I’
(32 bytes) !
‘o’

(32 bytes)

Step 2: Get rid of hashcode

All objects have ‘identity’ and identity hash:
— System.1dentityHashcode ()

Stored in header, because objects move
In practice, < 2% hashed
Can we store it lazily?

A hash state machine

b Never hashed ‘

Has been

hashed

Has stored
hash

Hashcode algorithm

* First time object is hashed:
— Generate hash based on address
— Record ‘has been hashed’
* |f object moves:
— Store hash at end of object
— Record ‘has been moved’
e Subsequent hashes:

— Determine if hash is stored or not
— Read hash, or generate hash based on address

Before

_class _class
_flags _flags
_hashcode - header _hashcode . header
_monitor _monitor
Size - _length
offset ‘H’ .
hashcode ‘e’
data ‘I’
(32 bytes) !
‘o’

(32 bytes)

_class
_flags
_monitor
Size
offset
hashcode
data

(padding)

(32 bytes)

— header

After

_class
_flags
_monitor
_length
IHI

Iel

III

III

(.7

)

(padding)

(32 bytes)

~ header

Step 3: Get rid of flags slot

* What’s in the flags?

Hash state 2 bits
GC info (e.g. age, remembered) 4-12 bits

Object type (e.g. array) 3 bits
Misc. other stuff Expands to fill available space

Hiding flags

* Infer some flags from class

— One extra indirect

* Hide the rest in the class pointer
— Classes must be 256-byte aligned
— One extra mask instruction

class flags

\ A J
Y |

24 bits 8 bits

_class
_flags
_monitor
Size
offset
hashcode
data

(padding)

(32 bytes)

— header

Before

_class
_flags
_monitor
_length
lHI

Iel

III

III

(.7

)

(padding)

(32 bytes)

~ header

_cls_flg
_monitor
size

offset

hashcode

data

(24 bytes)

— header

After

_cls_flg
_monitor
_length
‘H

‘o’

o

’I’

(.7

o)

(pad)

(24 bytes)

— header

Step 4: Get rid of monitor slot

* All objects have a monitor
— synchronized, wait, notify
* Very few objects use the monitor

— Strings are immutable
— Arrays are usually wrapped in other objects

* Use monitor slot for some objects

— “lock nursery” (i.e. hash table) for others

Can we guess where it's needed?

Maybe
Static analysis can help

But fails in some common cases
—Object lock = new Object();
J9 was conservative

— Removed monitor from a small set of classes
e String, Number, Boolean, ...

Experimental solution

 Grow monitors on demand

— Moving objects is expensive
* Must update all incoming pointers (usually)

— Combine with a small nursery to amortize cost

_cls_flg
_monitor
size

offset

hashcode

data

(24 bytes)

— header

Before

_cls_flg
_monitor
_length
‘H

‘o’

o

’I’

(.7

o)

(pad)

(24 bytes)

— header

After

_cls_flg } header _cls_flg
— header

Size _length

offset ‘H’)
hashcode ‘e’

data 1

(padding) T

(24 bytes) °

(padding)

(24 bytes)

Some more ideas

Why did you build a
death ray?

To take over the world.

No, I mean what mad
hypothesis are you testing?

Are you just making mad
observations? Look, I'm just trying to take
over the world. That's all.

You at least are going to
leave some of the world as
\ a mad control group, right?

Sad truth: Most "mad scientists" are actually just mad engineers

http://www.neatorama.com/2009/01/01/mad-scientists-are-actually-just-mad-engineers/

ldea 1: Hot and cold fields

Large objects may have rarely used fields
Use runtime profiling to identify hot fields
Split hot from cold for cache efficiency

Caveat:
— changing object layout at runtime is costly

Hot & cold layouts

e Sort hot fields to front

_cls_flg hot_f1 hot_f2 cold_f3 cold f4
PN

* Bidirectional objects

cold_f4 cold_f3 _cls_flg hot_f1 hot_f2
V'

* Linked objects

_cls_flg hot_f1 hot_f2 link
VN

cold_f3 cold_f4

I-

Hot & cold layouts

e Sort hot fields to front

_cls_flg hot_fl hot_f2 cold_f3 cold_f4

A

* Bidirectional objects

cold_f4 cold_f3 _cls_flg hot_f1 hot_f2

VN

* Linked objects

_cls_flg hot_f1 hot_f2 link

PN

cold_f3 cold_f4

ldea 2: Headerless objects?

* Can we delete the class pointer?

* |nfer class from pointer
— class = object & OxFFFFFFFEFFF00000O

Obj 1 ClassB Obj1l Obj12
Obj 4 Obj 13 Free Free

Obj 7 Free Free Free

Obj 10 Free Free Free

Free Free Free Free

Headerless objects (cont.)

* Wastes memory
— But RAM and address space are cheap

* Organizes objects by class

— Splits up related objects
— Could be bad for cache

Lessons

* Object shape affects performance

* Language affects object shape
— Dynamic vs. static
— Hash codes
— Synchronization
— Compatibility

Further reading

* Bacon, Fink and Grove. “Space- and Time-
Efficient Implementation of the Java Object
Model”, 2002

* Adl-Tabatabai, et al. “Improving 64-Bit Java IPF

Performance by Compressing Heap
References”, 2004

* Domborwski, et al. “Dynamic monitor
allocation in the Java virtual machine”, 2013

Break large objects up into trees of smaller

ldea 3: Objlets

objects

Simp
AvoIC

Enab

ifies allocation
s defragmentation
es realtime allocation guarantees

