
Introduction to x64 Assembly

Martin Hirzel

Version of November 15, 2011

Abstract

The name x64 refers to a 64-bit instruction set for
Intel and AMD processors, which are commonly
found in current-generation laptop and desktop
computers. This document introduces a subset of
x64, including the features needed for a Compiler
Construction course at NYU. We write assembler
files using “Intel syntax”, and we adopt the C
calling conventions of GNU/Linux. The goal is for
our assembler code to work on the NYU machines
energon1.cims.nyu.edu thru energon4.cims.nyu.edu.
The Compiler Construction course webpage is here:
http://cs.nyu.edu/courses/fall11/CSCI-GA.2130-001

1 Example: Hello, World!

Figure 1 shows an example program in x64 assembler
that prints a greeting to standard output. Before we
look at what this does, let’s try running it. The steps
are as follows:

• Put the code in a file called main.s. The file
extension .s indicates an assembler file.

• Run the assembler and linker. We use gcc for
this. When the input file to gcc is an assembler
file, gcc skips its C front-end, and just assembles
and links the file. We need to provide the option
-m64 to choose x64 assembler, and -masm=intel to
choose the Intel syntax. Putting it all together,
we get the following command-line:
gcc -m64 -masm=intel main.s

• The previous step produced an executable file
a.out with the machine code. Run it:
./a.out

While we are on the topic of tooling, you can also
use gcc to compile a C program to assembly by us-
ing the gcc command-line option -S. This option in-

.intel syntax

.text

.globl main

.type main, @function

main:

/* function prologue */

push %rbp

mov %rbp, %rsp

/* call puts("Hello, World!") */

mov %rdi, OFFSET FLAT:main.S 0

call puts

/* return zero */

mov %rax, 0

mov %rsp, %rbp

pop %rbp

ret

main.end:

.size main, .-main

.section .rodata

main.S 0:

.string "Hello, World!"

Figure 1: A simple program in x64 assem-
bler. See also: http://cs.nyu.edu/courses/fall11/
CSCI-GA.2130-001/x64-intro/hello_world.txt

structs gcc to run the front-end only. That is a use-
ful approach for getting concrete examples of various
code sequences. If you specify -Wall to enable warn-
ings and -ansi to select the C dialect, the following
command-line compiles a source program main.c to a
target program main.s:
gcc -Wall -ansi -m64 -masm=intel -S main.c

2 x64 Syntax

Rather than give a formal grammar for x64, this sec-
tion describes it using the example in Figure 1. There
is one statement per line, which means that changing
newlines would change the meaning of the program.
Other than that, the syntax is insensitive to whites-

Introduction to x64 assembly, c©Martin Hirzel 2011 1

http://cs.nyu.edu/courses/fall11/CSCI-GA.2130-001
http://cs.nyu.edu/courses/fall11/CSCI-GA.2130-001/x64-intro/hello_world.txt
http://cs.nyu.edu/courses/fall11/CSCI-GA.2130-001/x64-intro/hello_world.txt

pace, meaning that additional spaces, tabs, or com-
ments do not affect program behavior. Comments
start with /* and end with */.

The example program contains two kinds of state-
ments: directives and instructions. Directives start
with a period, such as .intel syntax, whereas instruc-
tions consist of an operator and a list of operands,
such as mov %rbp, %rsp. In addition, a statement
can start with labels, which are symbols followed by
colon, such as main.end:.

The directive .intel syntax at the start of the file
selects Intel syntax. Without that directive, the de-
fault is .att syntax. One major difference between
the two options is the order of operands: Intel syntax
shows the destination operand first, whereas AT&T
syntax shows the destination operand last. While the
Dragon book does not show any x64 instructions, it
does adopt the destination-first convention for assem-
bler code, so using Intel syntax is less confusing.

The directive .text tells the assembler to put
the following statements in the text section, which
contains executable code. In contrast, the direc-
tive .section .rodata tells the assembler to put the
following statements in the read-only data section,
which we use for string constants. The directive
.string "Hello, World!" copies the characters in the
string to the binary file, and ends it with a 0-byte.
The string constant may contain escapes, such as \n
for newline.

The directive .globl main makes the label main
visible to the linker. Together with the directive
.type main, @function, it indicates that main is a
function that can be called from outside. We put
these two directives at the start of every function’s
text section. The directive .size main, .-main tells
the assembler to compute the size of symbol main to
be the difference between the label main and the cur-
rent position in the file. We put this directive at the
end of every function’s text section.

To summarize, we start each file with
.intel syntax, followed by code for the func-
tions. Each function has a .text section and
optionally an .rodata section. The text section
contains .globl and .type directives, the function’s
start label, instructions, and a .size directive. The
.rodata section contains .string directives. To learn
more about as (the GNU assembler), see the user
manual:
http://sourceware.org/binutils/docs-2.21/as

3 Addresses

As mentioned before, an instruction consists of zero
or more labels, an operator, and zero or more
operands. We refer to operands as “addresses”, even
when they are non-pointer values. We use the follow-
ing kinds of addresses:

• Registers (r). There are sixteen 64-bit general-
purpose registers: %rax to %rdx, %rsp, %rbp, %rsi,
%rdi, and %r8 to %r15. However, some of these
registers play a special role, for example, %rsp
and %rbp typically hold the stack pointer and
base pointer, as their names imply.

• Immediate operands (i). These are either integer
constants or labels.

Integer constants are written as either the
digit 0, or a digit from 1-9 followed by zero
or more digits from 0-9.

Label operands come in two forms. On
the one hand, control transfer instructions,
such as jmp or call, use code labels, which
are simply the symbol name, such as main.
On the other hand, data transfer instruc-
tions, such as mov, use data labels, written
as OFFSET FLAT: followed by the label name,
such as OFFSET FLAT:main.S 0 in Figure 1.

• Memory operands (m). These addresses add
a constant to a register, and then deref-
erence the resulting pointer. For example,
QWORD PTR [%rax+8] takes the value of register
%rax, adds 8, interprets the result as a pointer,
and dereferences it. The offset can also be neg-
ative, such as QWORD PTR [%rsp-16], or it can be
omitted when zero, such as QWORD PTR [%rbp].

Not every instruction accepts every kind of ad-
dress. The abbreviations r, i, and m serve
to indicate which addressing modes are sup-
ported. To learn more about addresses, see
Volume 1 of the “Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual”: http:

//www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html/

4 Instructions

The following reference lists instructions in alpha-
betical order. When an instruction has multiple

Introduction to x64 assembly, c©Martin Hirzel 2011 2

http://sourceware.org/binutils/docs-2.21/as
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/

addressing modes, the alternatives are separated by
a vertical bar |. As a general rule of thumb, most
instructions support only one memory operand (m),
not two. Typically, the first operand is a destination
operand, in other words, many instructions store
their result in the first operand.

add → add r, i | add r, r | add r, m | add m, i | add m, r

Compute the sum of the two operands, and store the
result in the first operand.

call → call label

Store the return address into [%rsp]. Subtract 8
from %rsp. Jump to the label.

cmp → cmp r, i | cmp r, r | cmp r, m | cmp m, i | cmp m, r

Compare the two operands. Encode the result in
status flags in an internal register, which can then be
used for the various conditional jump instructions:
je, jg, jge, jl, jle, and jne.

idiv → idiv r | idiv m

Treat %edx:%eax as a single, signed 128-bit integer
value. Divide this value by the operand. Store the
rounded-down quotient in %rax, and the remainder
in %rdx. A common idiom to prepare %edx for this in-
struction is to first do mov %rdx, %rax; sar %rdx, 63,
which fills %rdx entirely with the appropriate sign bit.

imul → imul r, r | imul r, m

Compute the product of the two signed integer
operands, and store the result in the first operand.

jmp → jmp label

Jump unconditionally to label.

je → je label

Jump to label if the first operand of the preceding
cmp instruction was equal to the second operand.

jg → jg label

Jump to label if the first operand of the preceding
cmp instruction was > the second operand.

jge → jge label

Jump to label if the first operand of the preceding
cmp instruction was ≥ the second operand.

jl → jl label

Jump to label if the first operand of the preceding
cmp instruction was < the second operand.

jle → jle label

Jump to label if the first operand of the preceding

cmp instruction was ≤ the second operand.

jne → jne label

Jump to label if the first operand of the preceding
cmp instruction was 6= the second operand.

mov → mov r, i | mov r, r | mov r, m | mov m, i | mov m, r

Copy the value of the second operand to to the first
operand.

neg → neg r | neg m

Replace the operand with its two’s complement
negation, i.e., signed integer minus.

pop → pop r | pop m

Copy the value from [%rsp] to the operand, then
add 8 to %rsp.

push → push i | push r | push m

Copy the operand value to [%rsp], then subtract 8
from %rsp.

ret → ret

Retrieve the return address from [%rsp]. Add 8 to
%rsp. Jump to the return address.

sal → sal r, i | sal m, i

Perform a left-shift on the first operand, with the
amount given by the second operand. A left-shift
fills in with zero bits.

sar → sar r, i | sar m, i

Perform an arithmetic right-shift on the first
operand, with the amount given by the second
operand. An arithmetic right-shift preserves the
sign, by filling in with the left-most (sign) bit.

shr → shr r, i | shr m, i

Perform a logical right-shift on the first operand, with
the amount given by the second operand. A logical
right-shift ignores the sign, by filling in with zero bits.

sub → sub r, i | sub r, r | sub r, m | sub m, i | sub m, r

Subtract the second operand from the first operand,
and store the result in the first operand.

The x64 instruction set has many more instruc-
tions than shown here. Furthermore, most of the
instructions support more addressing modes than
listed. The reference here should suffice for our
compiler construction project, but if you want to
learn more, see Volume 2 of the “Intel 64 and IA-32
Architectures Software Developer’s Manual”: http:
//www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html/

Introduction to x64 assembly, c©Martin Hirzel 2011 3

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/

5 Calling Conventions

We adopt the same calling conventions as for the C
programming language, because that enables us to
call external functions defined in the runtime, such
as, a print function. In the assembly code of the
caller, the calling sequence is the same, irrespective of
whether the callee is written in assembly or compiled
from C. In fact, Figure 1 shows a call from assembly
to the C function puts. Conversely, C code can call
assembly functions. In fact, main gets invoked from
“outside”.

The stack grows “down”, which means that new
slots are added at the bottom, and older slots reside
at higher addresses. This is reflected in some of the
instructions we saw in the previous section (push, pop,
call, and ret).

%rbp − 8
...

%rbp − frame size

caller local
variables and
temporaries

%rsp + 8 * (n−7) arg[n−1]
... ...

%rsp + 8 arg[7]
%rsp arg[6]

%rbp + 8 * (n−5) arg[n−1]
...

%rbp + 24 arg[7]
%rbp + 16 arg[6]

%rbp + 8 return address
%rbp caller %rbp

%rbp − 8
...

%rsp = %rbp − frame size

callee local
variables and
temporaries

(a) After pushing arguments,
before making call

(b) After making call,
after function prologue

Figure 2: Stack layout for C calling conventions on
x64/Linux.

Figure 2 shows the stack layout, both before and
after a function call. If the function has more than 6
arguments, then arguments 0 . . . 5 get passed in reg-
isters %rdi, %rsi, %rdx, %rcx, %r8, and %r9, and ar-
guments 6 . . . n − 1 get passed on the stack. If the
function has at most 6 arguments, all arguments get
passed in registers. Just before the caller executes
the call instruction, the stack layout is as shown in
Figure 2(a), with register %rsp (the stack pointer)
pointing to the lowest argument on the stack.

The call instruction pushes the return address on
the stack. Then, the callee is responsible for pushing
the old value of %rbp (the base pointer) on the stack,
and setting the new value of %rbp to point to the
location of the old value. After that, the callee can
use further stack space for its own local variables and
temporaries. In that case, %rbp remains unchanged,

pointing to the base of the stack frame, whereas %rsp
points to the end of the stack frame, as shown in
Figure 2(b). The following pseudo-code shows the
callee’s prologue sequence:

push %rbp

move %rbp, %rsp

sub %rsp, /*frame size*/

A non-void function returns its result through reg-
ister %rax. Other than that, the function epilogue
resets %rsp back to the start of the frame, pops the
old value of %rbp, and uses the ret instruction to
pop the return address and jump back to the caller.
The following pseudo-code shows the callee’s return
sequence:

move %rax, /*return value*/

move %rsp, %rbp

pop %rbp

ret

One issue we have not yet discussed is caller-save
registers and callee-save registers. As the name im-
plies, the caller must save values of caller-save regis-
ters before it makes the call, as they may be lost when
the callee overwrites them. In other words, caller-save
registers “belong to” the callee. On the other hand,
the callee must save values of callee-save registers in
the prologue sequence and restore them in the epi-
logue sequence, as the caller may expect that their
value after the return is the same as before the call.
In other words, callee-save registers “belong to” the
caller.

In the C calling conventions for x64/Linux, reg-
isters %rbp, %rbx, and %r12 thru %r15 belong to the
caller (are callee-save registers), and all remaining
registers belong to the callee (are caller-save regis-
ters). However, it is often not necessary to save and
restore registers, since they may not hold live values.
For example, consider the caller-save register %rdx. If
the caller does not keep a value in %rdx across a call,
it does not need to save and restore %rdx.

Calling conventions are often part of the so-called
ABI, which stands for “application binary interface”.
The calling conventions described here are only a
subset of the C ABI for x64/Linux: we only dis-
cuss values of size 8 bytes that can be stored in
a single register or stack slot, and we only discuss
general-purpose registers, no floating point or vec-
tor registers. If you want to learn more about the
full-fledged ABI, you can use the following document:
http://x86-64.org/documentation/abi.pdf

Introduction to x64 assembly, c©Martin Hirzel 2011 4

http://x86-64.org/documentation/abi.pdf

	Example: Hello, World!
	x64 Syntax
	Addresses
	Instructions
	Calling Conventions

