Operations on Floating Point Numbers

There are very few:
Standard arithmetic operations: +, −, ∗, /,
plus comparison, square root, etc.

The operands must be available in the processor memory, and so are floating point numbers. But combining two floating point numbers may not give a floating point number. e.g. multiplication of two 24-bit significands generally gives a 48-bit significand.

When the result is not a floating point number, the IEEE standard requires that the computed result be the correctly rounded value of the exact result.

Q: Using round to nearest, which of $1 + 10^{-5}$, $1 + 10^{-10}$, $1 + 10^{-15}$ round to 1
IEEE Rule for Rounding

Let x and y be floating point numbers, and let $\oplus, \ominus, \otimes, \oslash$ denote the implementations of $+, -, \ast, /$ on the computer. Thus $x \oplus y$ is the computer’s approximation to $x + y$.

The IEEE rule is then precisely:

\[
\begin{align*}
x \oplus y &= \text{round}(x + y), \\
x \ominus y &= \text{round}(x - y), \\
x \otimes y &= \text{round}(x \ast y), \\
x \oslash y &= \text{round}(x/y).
\end{align*}
\]

From our discussion of relative rounding errors, when $x + y$ is a normalized number,

\[
x \oplus y = (x + y)(1 + \delta), \quad |\delta| \leq \epsilon,
\]

for all rounding modes.

Similarly for \ominus, \otimes and \oslash.

(Note that $|\delta| \leq \epsilon/2$ for round to nearest).
Implementing Correctly Rounded FPA

Consider **adding** two IEEE single precision CFPNs: \(x = m \times 2^E \) and \(y = p \times 2^F \).

First (if necessary) **shift one significand**, so both numbers have the same **exponent** \(G = \max\{E, F\} \). The significands are then **added**, and if necessary, the result **normalized and rounded**. e.g. adding
\[
3 = (1.100)_2 \times 2^1 \quad \text{to} \quad 3/4 = (1.100)_2 \times 2^{-1} \quad : \\
(1.1000000000000000000000000000000)_{2} \times 2^1 \\
+ (0.0110000000000000000000000000000)_{2} \times 2^1 \\
= (1.1110000000000000000000000000000)_{2} \times 2^1.
\]
Further normalizing & rounding is not needed.

Now add 3 to \(3 \times 2^{-23} \). We get
\[
(1.1000000000000000000000000000000)_{2} \times 2^1 \\
+ (0.00000000000000000000000000000001|1)_{2} \times 2^1 \\
= (1.10000000000000000000000000000001|1)_{2} \times 2^1.
\]
Result is **not** an IEEE single precision CFPN, and so must be **correctly rounded**.
Difficulties of Implementation
Correctly rounded floating point addition and subtraction is not trivial. e.g. \(x - y \) with \(x = (1.0) \times 2^0 \) and \(y = (1.1111\ldots1) \times 2^{-1} \), where \(y \) is the next floating point number smaller than \(x \). Aligning the significands:

\[
\begin{align*}
(1.00000000000000000000000000000000 | 0) \times 2^0 \\
- (0.11111111111111111111111111111111 | 1) \times 2^0 \\
= (0.00000000000000000000000000000000 | 1) \times 2^0
\end{align*}
\]

an example of cancellation, (most bits in the two numbers cancel each other). The result is \((1.0) \times 2^{-24} \), a floating point number, but to obtain this we must carry out the subtraction using an extra bit, a guard bit.

Cray supercomputers do not have a guard bit. Cray XMP equivalent operation gives: \(x \ominus y = 2(x - y) \), wrong by a factor of two. Cray YMP gives \(x \ominus y = 0 \). Cray supercomputers do not use correctly rounded arithmetic.
Difficulties of Implementation, ctd.

Machines supporting the IEEE standard do have correctly rounded arithmetic, so that e.g. \(x \ominus y = \text{round}(x - y) \) always holds. How this is implemented depends on the machine. Typically floating point operations are carried out using extended precision registers, e.g. 80-bit registers.

Surprisingly, even 24 guard bits don’t guarantee correctly rounded addition with 24-bit significands when the rounding mode is round to nearest. Machines that implement correctly rounded arithmetic take such possibilities into account, and it turns out that correctly rounded results can be achieved in all cases using only two guard bits together with an extra bit, called a sticky bit, which is used to flag a rounding problem of this kind.
Floating point multiplication

If \(x = m \times 2^E \) and \(y = p \times 2^F \), then \[
x \times y = (m \times p) \times 2^{E+F}
\]

Three steps: multiply the significands, add the exponents, and normalize and correctly round the result. Single precision significands are easily multiplied in an extended precision register, (the product of two 24-bit significand bitstrings is a 48-bit bitstring which is then correctly rounded to 24 bits after normalization). Multiplication of double precision or extended precision significands is not so straightforward: dropping bits may lead to incorrectly rounded results.

Multiplication and division are more complicated than addition and subtraction, and may require more execution time; certainly on PC’s, not always on supercomputers.
Q: Assume that

\[x = m \times 2^E, \quad y = p \times 2^F \]

are normalized numbers, i.e.

\[1 \leq m < 2; \quad 1 \leq p < 2. \]

How many bits may it be necessary to shift the significand product \(m \times p \) left or right to normalize the result?
Exceptional Situations
When a reasonable response to exceptional data is possible, it should be used.

The simplest example is *division by zero*. Two *earlier* standard responses:

(i) generate the *largest floating point number* as the result. **Rationale:** user would notice the large number in the output and conclude something had gone wrong. **Disaster:** e.g. 2/0 – 1/0 would then have a result of 0, which is *completely meaningless*. In general the user might *not even notice* that any error had taken place).

(ii) generate a *program interrupt*, e.g. “fatal error — division by zero”. The burden was on the programmer to make sure that division by zero would *never* occur.
Example: Consider computing the total resistance in an electrical circuit with two resistors (R_1 and R_2 ohms) connected in parallel:

![resistance circuit diagram](resis.ps)

Figure 5: The Parallel Resistance Circuit

The formula for the **total resistance** is

$$T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}.$$

What if $R_1 = 0$? If one resistor offers no resistance, all the current will flow through that and avoid the other; therefore, the total resistance in the circuit is zero. The formula for T also makes perfect sense **mathematically**:

$$T = \frac{1}{\frac{1}{0} + \frac{1}{R_2}} = \frac{1}{\infty + \frac{1}{R_2}} = \frac{1}{\infty} = 0.$$
The IEEE FPA Solution

Why should a programmer have to worry about treating division by zero as an exceptional situation here?

In IEEE floating point arithmetic, if the initial floating point environment is set properly: division by zero does not generate an interrupt but gives an infinite result, program execution continuing normally.

In the case of the parallel resistance formula this leads to a final correct result of \(1/\infty = 0\), following the mathematical concepts exactly:

\[
T = \frac{1}{0 + \frac{1}{R_2}} = \frac{1}{\infty + \frac{1}{R_2}} = \frac{1}{\infty} = 0.
\]
Other uses of ∞

We used some of the following:

\[a > 0 \ : \ a/0 \rightarrow \infty \]
\[a \ast \infty \rightarrow \infty, \]
\[a \text{ finite} \ : \ a + \infty \rightarrow \infty \]
\[a - \infty \rightarrow -\infty \]
\[a/\infty \rightarrow 0 \]
\[\infty + \infty \rightarrow \infty. \]

But $\infty \ REM \ a$, $a \ REM \ 0$, $\infty \ast 0$, $0/0$, ∞/∞ and $\infty - \infty$ make no sense. Computing any of these is called an invalid operation, and the IEEE standard sets the result to NaN (Not a Number). Any arithmetic operation on a NaN also gives a NaN result.

Whenever a NaN is discovered in the output, the programmer knows something has gone wrong.
(An ∞ in the output may or may not indicate an error, depending on the context).
Logical Expressions

If $x_k \searrow 0$ we say $1/x_k \to \infty$, but $x_k \nearrow 0$ implies $1/x_k \to -\infty$. This suggests a need for -0, so that the similar conventions $a/0 = \infty$ and $a/(-0) = -\infty$ may be followed, where $a > 0$.

It is essential that the logical expression $ \langle 0 = -0 \rangle$ has the value true while $ \langle \infty = -\infty \rangle$ has the value false. Thus it is possible the logical expressions $\langle a = b \rangle$ and $\langle 1/a = 1/b \rangle$ have different values, namely when $a = 0$ and $b = -0$ (or $a = \infty$, $b = -\infty$).

Q: In our total resistance example, what is the result of $T = (R_1^{-1} + R_2^{-1})^{-1}$, if R_1 is: negative, -0, or NaN
Arithmetic Comparisons
When a and b are finite real numbers, one of three conditions holds: $a = b$, $a < b$, or $a > b$. The same is true if a and b are finite floating point numbers. In both cases we also have for finite a: $-\infty < a < \infty$.

Note: cc on the Sun 4 with $a = \infty$ and $b = \infty$, gives $\langle a = b \rangle$ true. (Suspect mathematically, Useful computationally).

However, if either a or b has a NaN value, none of the three conditions $=, <, >$ can be said to hold. Instead, a and b are said to be unordered.

Consequently, although the logical expressions $\langle a \leq b \rangle$ and $\langle \text{not}(a > b) \rangle$ usually have the same value, they are defined to have different values (the first false, the second true) if either a or b is a NaN.
Overflow and Underflow

Overflow is said to occur when

\[N_{\text{max}} < | \text{true result} | < \infty, \]

where \(N_{\text{max}} \) is the largest normalized floating point number.

Two pre-IEEE standard treatments:

(i) Set the result to \((\pm) N_{\text{max}}\), or
(ii) Interrupt with an error message.

In IEEE arithmetic, the standard response depends on the rounding mode. Suppose that the overflowed value is positive. Then round up gives the result \(\infty \), while round down and round towards zero set the result to \(N_{\text{max}} \).

For round to nearest, the result is \(\infty \). From a practical point of view this is important, since round to nearest is the default rounding mode and any other choice may lead to very misleading final computational results.
Underflow

Underflow is said to occur when

\[0 < | \text{true result} | < N_{\text{min}}, \]

where \(N_{\text{min}} \) is the *smallest* normalized floating point number.

Historically the response was usually: replace the result by zero.

In **IEEE arithmetic**, the result may be a *sub-normal* number instead of zero. This allows results much smaller than \(N_{\text{min}} \).
The IEEE standard: an exception must be signaled by setting an associated status flag, and the programmer should have the option of either trapping the exception, or masking the exception, in which case the program continues with the response of the table.

It is usually best to rely on these standard responses.