Operating Systems

================ Start Lecture #1 ================
G22.2250 Operating Systems--Allan Gottlieb
2003-04 Fall
Tuesday 5-6:50pm Rm 109 Ciww

Chapter -1: Administrivia

I start at -1 so that when we get to chapter 1, the numbering will agree with the text.

(-1).1: Contact Information

(-1).2: Course Web Page

There is a web site for the course. You can find it from my home page, which is http://allan.ultra.nyu.edu/~gottlieb

(-1).3: Textbook

The course text is Tanenbaum, "Modern Operating Systems", 2nd Edition

(-1).4: Computer Accounts and Mailman Mailing List

(-1).5: Grades

Grades will computed as
.3*LabAverage + .7*FinalExam (but see homeworks below).

(-1).7: The Upper Left Board

I use the upper left board for lab/homework assignments and announcements. I should never erase that board. Viewed as a file it is group readable (the group is those in the room), appendable by just me, and (re-)writable by no one. If you see me start to erase an announcement, let me know.

I try very hard to remember to write all announcements on the upper left board and I am normally successful. If, during class, you see that I have forgotten to record something, please let me know. HOWEVER, if I forgot and no one reminds me, the assignment has still been given.

(-1).8: Homeworks and Labs

I make a distinction between homeworks and labs.

Labs are

Homeworks are

(-1).8.1: Homework Numbering

Homeworks are numbered by the class in which they are assigned. So any homework given today is homework #1. Even if I do not give homework today, the homework assigned next class will be homework #2. Unless I explicitly state otherwise, all homeworks assignments can be found in the class notes. So the homework present in the notes for lecture #n is homework #n (even if I inadvertently forgot to write it to the upper left board).

(-1).8.2: Doing Labs on non-NYU Systems

You may solve lab assignments on any system you wish, but ...

(-1).8.3: Obtaining Help with the Labs

Good methods for obtaining help include

  1. Asking me during office hours (see web page for my hours).
  2. Asking the mailing list.
  3. Asking another student, but ...
    Your lab must be your own.
    That is, each student must submit a unique lab. Naturally, simply changing comments, variable names, etc. does not produce a unique lab.

(-1).8.4: Computer Language Used for Labs

You may write your lab in Java, C, or C++.

(-1).9: A Grade of ``Incomplete''

It is university policy that a student's request for an incomplete be granted only in exceptional circumstances and only if applied for in advance. Naturally, the application must be before the final exam.

Chapter 0: Interlude on Linkers

Originally called a linkage editor by IBM.

A linker is an example of a utility program included with an operating system distribution. Like a compiler, the linker is not part of the operating system per se, i.e. it does not run in supervisor mode. Unlike a compiler it is OS dependent (what object/load file format is used) and is not (normally) language dependent.

0.1: What does a Linker Do?

Link of course.

When the compiler and assembler have finished processing a module, they produce an object module that is almost runnable. There are two remaining tasks to be accomplished for the object module to be runnable. Both are involved with linking (that word, again) together multiple object modules. The tasks are relocating relative addresses and resolving external references.

0.1.1: Relocating Relative Addresses

0.1.2: Resolving External Reverences

The output of a linker is called a load module because it is now ready to be loaded and run.

To see how a linker works lets consider the following example, which is the first dataset from lab #1. The description in lab1 is more detailed.

The target machine is word addressable and has a memory of 250 words, each consisting of 4 decimal digits. The first (leftmost) digit is the opcode and the remaining three digits form an address.

Each object module contains three parts, a definition list, a use list, and the program text itself. Each definition is a pair (sym, loc). Each entry in the use list is a symbol and a list of uses of that symbol.

The program text consists of a count N followed by N pairs (type, word), where word is a 4-digit instruction described above and type is a single character indicating if the address in the word is Immediate, Absolute, Relative, or External.

Input set #1

1 xy 2
2 z 2 -1 xy 4 -1
5 R 1004  I 5678  E 2000  R 8002  E 7001
1 z 1 2 3 -1
6 R 8001  E 1000  E 1000  E 3000  R 1002  A 1010
1 z 1 -1
2 R 5001  E 4000
1 z 2
2 xy 2 -1 z 1 -1
3 A 8000  E 1001  E 2000

The first pass simply finds the base address of each module and produces the symbol table giving the values for xy and z (2 and 15 respectively). The second pass does the real work using the symbol table and base addresses produced in pass one.

              Symbol Table

               Memory Map
 0:       R 1004      1004+0 = 1004
 1:       I 5678               5678
 2: xy:   E 2000 ->z           2015
 3:       R 8002      8002+0 = 8002
 4:       E 7001 ->xy          7002
 0        R 8001      8001+5 = 8006
 1        E 1000 ->z           1015
 2        E 1000 ->z           1015
 3        E 3000 ->z           3015
 4        R 1002      1002+5 = 1007
 5        A 1010               1010
 0        R 5001      5001+11= 5012
 1        E 4000 ->z           4015
 0        A 8000               8000
 1        E 1001 ->z           1015
 2 z:     E 2000 ->xy          2002

The output above is more complicated than I expect you to produce it is there to help me explain what the linker is doing. All I would expect from you is the symbol table and the rightmost column of the memory map.

You must process each module separately, i.e. except for the symbol table and memory your space requirements should be proportional to the largest module not to the sum of the modules. This does NOT make the lab harder.

(Unofficial) Remark: It is faster (less I/O) to do a one pass approach, but is harder since you need ``fix-up code'' whenever a use occurs in a module that precedes the module with the definition.

The linker on unix was mistakenly called ld (for loader), which is unfortunate since it links but does not load.

Historical remark: Unix was originally developed at Bell Labs; the seventh edition of unix was made publicly available (perhaps earlier ones were somewhat available). The 7th ed man page for ld begins (see http://cm.bell-labs.com/7thEdMan).

.TH LD 1 
ld \- loader
.B ld
[ option ] file ...
.I Ld
combines several
object programs into one, resolves external
references, and searches libraries.
By the mid 80s the Berkeley version (4.3BSD) man page referred to ld as "link editor" and this more accurate name is now standard in unix/linux distributions.

Lab #1: Implement a linker. The specific assignment is detailed on the class home page.

End of Interlude on Linkers

Chapter 1: Introduction

Homework: Read Chapter 1 (Introduction)

Levels of abstraction (virtual machines)

1.1: What is an operating system?

The kernel itself raises the level of abstraction and hides details. For example a user (of the kernel) can write to a file (a concept not present in hardware) and ignore whether the file resides on a floppy, a CD-ROM, or a hard magnetic disk

The kernel is a resource manager (so users don't conflict).

How is an OS fundamentally different from a compiler (say)?

Answer: Concurrency! Per Brinch Hansen in Operating Systems Principles (Prentice Hall, 1973) writes.

The main difficulty of multiprogramming is that concurrent activities can interact in a time-dependent manner, which makes it practically impossibly to locate programming errors by systematic testing. Perhaps, more than anything else, this explains the difficulty of making operating systems reliable.
Homework: 1, 2. (unless otherwise stated, problems numbers are from the end of the chapter in Tanenbaum.)

1.2 History of Operating Systems

  1. Single user (no OS).

  2. Batch, uniprogrammed, run to completion.
  3. Multiprogrammed
  4. Personal Computers

Homework: 3.