Observations and Equivalence of Systems

Let $U \subseteq V$ be a subset of state variables and s be a V-state. We denote by $s \downarrow_U$ the U-state, called the projection of s on U, which is obtained by restricting the interpretation of variables to the variables in U.

For a V-state sequence

$$
\sigma : s_0, s_1, \ldots,
$$

we denote by $\sigma \downarrow_U$ the projected U-state sequence

$$
\sigma \downarrow_U : s_0 \downarrow_U, s_1 \downarrow_U, \ldots
$$

An O-state sequence Ω is called an observation of the FDS D if $\Omega = \sigma \downarrow_O$ for some σ, a computation of σ. We denote by $\text{Obs}(D)$ the set of observations of FDS D.

Systems D_1 and D_2 are said to be equivalent, denoted $D_1 \sim D_2$, if their sets of observations are identical. That is,

$$
\text{Obs}(D_1) = \text{Obs}(D_2)
$$
Feasibility and Viability of Systems

An FDS D is said to be feasible if D has at least one computation.

A finite or infinite sequence of states is defined to be a run of an FDS D if it satisfies the requirements of initiality and consecution but not necessarily any of the fairness requirements.

The FDS D is defined to be viable if any finite run of D can be extended to a computation of D.

Claim 7. Every FDS derived from an SPL program is viable.

Note that if D is a viable system, such that its initial condition Θ_D is satisfiable, then D is feasible.
Operations on FDS’s: Asynchronous Parallel Composition

Systems \mathcal{D}_1 and \mathcal{D}_2 are compatible if $V_1 \cap V_2 = \mathcal{O}_1 \cap \mathcal{O}_2$.

The asynchronous parallel composition of the compatible systems \mathcal{D}_1 and \mathcal{D}_2, denoted by $\mathcal{D}_1 \parallel \mathcal{D}_2$, is given by $\mathcal{D} = \langle V, \mathcal{O}, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$, where

\[
\begin{align*}
V & = V_1 \cup V_2 \\
\mathcal{O} & = \mathcal{O}_1 \cup \mathcal{O}_2 \\
\Theta & = \Theta_1 \land \Theta_2 \\
\rho & = \left\{ \begin{array}{ll}
(\rho_1 \land \text{pres}(V_2 - V_1)) & \\
\lor & \\
(\rho_2 \land \text{pres}(V_1 - V_2)) &
\end{array} \right. \\
\mathcal{J} & = \mathcal{J}_1 \cup \mathcal{J}_2 \\
\mathcal{C} & = \mathcal{C}_1 \cup \mathcal{C}_2
\end{align*}
\]

The predicate $\text{pres}(U)$ stands for the assertion $U' = U$, implying that all the variables in U are preserved by the transition.

Asynchronous parallel composition represents the interleaving-based concurrency which is the assumed concurrency in shared-variables models.

Claim 8. $\mathcal{D}(P_1 \parallel P_2) \sim \mathcal{D}(P_1) \parallel \mathcal{D}(P_2)$
Synchronous Parallel Composition

The synchronous parallel composition of the compatible systems \mathcal{D}_1 and \mathcal{D}_2, denoted by $\mathcal{D}_1 \parallel \mathcal{D}_2$, is given by the FDS $\mathcal{D} = \langle V, \mathcal{O}, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$, where

\[
V = V_1 \cup V_2 \\
\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2 \\
\Theta = \Theta_1 \land \Theta_2 \\
\rho = \rho_1 \land \rho_2 \\
\mathcal{J} = \mathcal{J}_1 \cup \mathcal{J}_2 \\
\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2
\]

Synchronous parallel composition is useful for the modeling and verification of hardware designs. It is also useful for augmenting systems with auxiliary monitors.

Claim 9. Let σ be an infinite $(V_1 \cup V_2)$-state sequence. Sequence σ is a computation of $\mathcal{D}_1 \parallel \mathcal{D}_2$ iff $(\sigma \downarrow_{V_1}$ is a computation of \mathcal{D}_1 and $\sigma \downarrow_{V_2}$ is a computation of \mathcal{D}_2).
Requirement Specification Language: Temporal Logic

Assume an underlying (first-order) assertion language. The predicate $\text{at}_j \ell_i$, abbreviates the formula $\pi_j = \ell_i$, where ℓ_i is a location within process P_j.

A temporal formula is constructed out of state formulas (assertions) to which we apply the boolean operators \neg and \lor and various temporal operators, such as:

- \square – always
- \Diamond – eventually

A model for a temporal formula p is an infinite sequence of states $\sigma : s_0, s_1, \ldots$, where each state s_j provides an interpretation for the variables of p.
Semantics of LTL

Given a model σ, we define the notion of a temporal formula p holding at a position $j \geq 0$ in σ, denoted by $(\sigma, j) \models p$:

- For an assertion p,
 \[(\sigma, j) \models p \iff s_j \models p\]
 That is, we evaluate p locally on state s_j.
- $(\sigma, j) \models \neg p \iff (\sigma, j) \not\models p$
- $(\sigma, j) \models p \lor q \iff (\sigma, j) \models p \text{ or } (\sigma, j) \models q$
- $(\sigma, j) \models \square p \iff (\sigma, k) \models p \text{ for all } k \geq j$
- $(\sigma, j) \models \Diamond p \iff (\sigma, k) \models p \text{ for some } k \geq j$

If $(\sigma, 0) \models p$ we say that p holds over σ and write $\sigma \models p$. p is satisfiable if it holds over some model. p is (temporally) valid if it holds over all models.

Formulas p and q are equivalent, denoted $p \sim q$, if $p \leftrightarrow q$ is valid. They are called congruent, denoted $p \cong q$, if $\square(p \leftrightarrow q)$ is valid. If $p \cong q$ then p can be replaced by q in any context.

We write $p \Rightarrow q$ as an abbreviation for $\square(p \rightarrow q)$.
Reading Exercises

Following are some temporal formulas φ and what they say about a sequence $\sigma : s_0, s_1, \ldots$ such that $\sigma \models \varphi$:

- $\Box p$ — All states within σ satisfy p. Previously, we denoted this property by $\text{Inv}(p)$.

- $p \rightarrow \Diamond q$ — If p holds at s_0, then q holds at s_j for some $j \geq 0$.

- $\Box (p \rightarrow \Diamond q)$ — Every p is followed by a q. Also written as $p \Rightarrow \Diamond q$. Previously, we denoted this property by $p \leadsto q$.

- $\Box \Diamond q$ — The sequence σ contains infinitely many q’s.

- $\Diamond \Box q$ — All but finitely many states in σ satisfy q. Property q eventually stabilizes.
Temporal Specification of Properties

Formula \(\varphi \) is \(D \)-valid, denoted \(D \models \varphi \), if all computations of \(D \) satisfy \(\varphi \). Such a formula specifies a property of \(D \).

Following is a temporal specification of the main properties of program MUX-SEM.

- **Mutual Exclusion** – No computation of the program can include a state in which process \(P_1 \) is at \(\ell_3 \) while \(P_2 \) is at \(m_3 \). Specifiable by the formula

\[\square \neg (\text{at}_\ell \land \text{at}_m) \]

- **Accessibility** for \(P_1 \) – Whenever process \(P_1 \) is at \(\ell_2 \), it shall eventually reach it’s critical section at \(\ell_3 \). Specifiable by the formula

\[\square (\text{at}_\ell \rightarrow \square \text{at}_\ell) \]
Full Temporal Logic – The Basic Operators

[] – Next [] – Previous
[] – Until [] – Since

Their semantics:

- \((\sigma, j) \models \Box p \iff (\sigma, j + 1) \models p\)
- \((\sigma, j) \models p \text{ } \mathcal{U} \text{ } q \iff \text{ for some } k \geq j, (\sigma, k) \models q, \text{ and for every } i \text{ such that } j \leq i < k, (\sigma, i) \models p\)
- \((\sigma, j) \models \neg \Box p \iff j > 0 \text{ and } (\sigma, j - 1) \models p\)
- \((\sigma, j) \models p \text{ } \mathcal{S} \text{ } q \iff \text{ for some } k \leq j, (\sigma, k) \models q, \text{ and for every } i \text{ such that } j \geq i > k, (\sigma, i) \models p\)

All other temporal operators can be defined in terms of these 4 as follows:

\[\Diamond p = 1 \mathcal{U} p\] – Eventually
\[\Box p = \neg \Diamond \neg p\] – Henceforth
\[p \mathcal{W} q = \Box p \lor (p \mathcal{U} q)\] – Waiting-for, Unless, Weak Until

\[\neg \Diamond p = 1 \mathcal{S} p\] – Sometimes in the past
\[\Box p = \neg \neg \Diamond \neg p\] – Always in the past
\[p \mathcal{B} q = \Box p \lor (p \mathcal{S} q)\] – Back-to, Weak Since
\[\neg \Box p = \neg \neg \Box \neg p\] – Weak Previous
Expressive Completeness

Every (propositional) temporal formula φ can be translated into a first-order logic with monadic predicates over the naturals ordered by $<$ (1st-order theory of linear order).

For example, the 1st-order translation of $p \Rightarrow \diamondsuit q$ is

$$\forall t_1 \geq 0 : (p(t_1) \rightarrow \exists t_2 \geq t_1 : (q(t_2)))$$

Can every 1st-order formula be translated into temporal logic?

W. Kamp [Kamp68] has shown that the answer is negative if we only allow \square and \diamondsuit in our temporal formulas. But then proceeded to show that:

Claim 10. Every 1st-order formula can be translated into a temporal formula in the logic $\mathcal{L}(\mathcal{U} >, \mathcal{S} >)$.

[GPSS81] has shown that

Claim 11. Every 1st-order formula can be translated into a temporal formula in the logic $\mathcal{L}(\bigcirc, \mathcal{U})$.

This also shows that the past operators add no expressive power.
Classification of Formulas/Properties

A formula of the form $\Box p$ for some past formula p is called a safety formula.

A formula of the form $\Box \lozenge p$ for some past formula p is called a response formula.

An equivalent characterization is the form $p \Rightarrow \lozenge q$. The equivalence is justified by

$\Box (p \rightarrow \lozenge q) \sim \Box \lozenge ((\neg p) B q)$

Both formulas state that either there are infinitely many q’s, or there are no p’s, or there is a last q-position, beyond which there are no further p’s.

A property is classified as a safety/response property if it can be specified by a safety/response formula.

Every temporal formula is equivalent to a conjunction of a reactivity formulas, i.e.

$\bigwedge_{i=1}^{k} (\Box \lozenge p_i \lor \lozenge \Box q_i)$