The Eventual Predecessor Predicate Transformer

The immediate predecessor transformer $\rho \diamond \psi$ can be iterated to yield the eventual predecessor transformer:

$$\rho^* \diamond \psi = \psi \lor \rho \diamond \psi \lor \rho \diamond (\rho \diamond \psi) \lor \rho \diamond (\rho \diamond (\rho \diamond \psi)) \lor \cdots$$

Obviously, $\rho^* \diamond \psi$ characterizes all the states from which it is possible to reach a ψ-state by 0 or more ρ-steps.

A state s is called feasible if it initiates a fair run.

Let D be an FDS. We denote by D_T the FDS obtained from D by replacing the initial condition by the trivial assertion T (true). The state-transition graph G_{DT} represents all the possible D-states, including some which are not reachable by D.
A Symbolic Algorithm for Model Checking Response

Algorithm set-feasible \((\mathcal{D})\) : assertion — Calculate the set of \(\mathcal{D}_T\)-states initiating a fair \(\mathcal{D}\)-run, using symbolic operations

\[
\text{new, old : assertion}
\]

1. \(\text{old} := 0\)
2. \(\text{new} := 1\)
3. while \((\text{new} \neq \text{old})\) do
 begin
 \hspace{1cm} \(\text{old} := \text{new}\)
 \hspace{1cm} \(\text{new} := \text{new} \land (\rho_D \Diamond \text{new})\)
 \hspace{1.5cm} —— Only retain states which have a successor within \text{new}\n \hspace{1cm} \textbf{for each} \(J \in \mathcal{J}\) \textbf{do}
 \hspace{1.5cm} \(\text{new} := (\text{new} \land \rho_D)^* \Diamond (\text{new} \land J)\)
 \hspace{1.5cm} —— Only retain states with a \text{new}-path leading to a \(J\)-state
 \hspace{1cm} \textbf{for each} \((p, q) \in \mathcal{C}\) \textbf{do}
 \hspace{1.5cm} \(\text{new} := \left\{ \begin{array}{l}
\text{new} \land \neg p \\
\vee (\text{new} \land \rho_D)^* \Diamond (\text{new} \land q)
\end{array} \right.\)
 \hspace{1.5cm} —— Retain states violating \(p\) or having a \text{new}-path leading to a \(q\)-state
 end
4. \(\text{return}(\rho_D^* \Diamond \text{new})\)
Correctness of the Algorithm

Claim 5. Algorithm SET-FEASIBLE terminates, with state s satisfying SET-FEASIBLE(D) iff there exists a G_{DT}-path leading from s to a fair subgraph of G_{DT}.

The proof is partitioned into three parts:

1. **The Algorithm terminates:** We define an ordering relation on assertions by letting

 $$p \leq q \iff \|p\| \leq \|q\|.$$

 Denote by new^j_i the assertion which is the (symbolic) value of variable new at the jth visit to line i (before executing line i).

 Since all operations applied to variable new are of the form $new \land E$ or a disjunction of such expressions, it is easy to see that lines 5, 7, and 9 only remove states from new. Therefore, we have that $new^{j+1}_3 \leq new^j_3 = old^{j+1}_3$ for all $j = 1, 2, \ldots$.

 Since G_{DT} is finite, the algorithm must terminate.
Correctness of the Algorithm: Completeness

Next, we prove that Algorithm \textsc{set-feasible} is complete. Namely, if S is a fair subgraph of G_{D_T} and s is a state leading to S, then $s \in \|\textsc{set-feasible}(D)\|$.

To do so, we show that $S \subseteq \|new_{10}\|$ from which the claim of completeness follows.

The above inclusion follows by induction on the number of steps performed by the algorithm, where the induction basis is provided by

$$S \subseteq G_{D_T} = \|1\| = \|new^1\|,$$

and the induction step is supported by the fact that, due to S being a fair subgraph, $S \subseteq \|new\|$ implies the following:

$$S \subseteq \|\text{new} \land (\rho_D \lozenge \text{new})\|$$
$$S \subseteq \| (\text{new} \land \rho_D)^\ast \lozenge (\text{new} \land J)\| \quad \text{For every } J \in \mathcal{J}$$
$$S \subseteq \| \left(\lor (\text{new} \land \lnot p) \land (\text{new} \land q) \right)\| \quad \text{For every } (p, q) \in \mathcal{C}$$
Algorithm Correctness: Soundness

As finally, we show that the algorithm is sound. Namely, if \(s \in \text{SET-FEASIBLE}(D) \) then there exists \(S \), a fair subgraph of \(G_{DT} \), and a path leading from \(s \) to \(S \).

When the algorithm terminates, we know that

1. Every \(s \in \|new_{10}\| \) has a successor \(s' \in \|new_{10}\| \).
2. Every \(s \in \|new_{10}\| \) initiates a \(\|new_{10}\| \)-path leading to a \(J \)-state, for every \(J \in J \).
3. Every \(s \in \|new_{10}\| \) initiates a \(\|new_{10}\| \)-path leading to a \(q \)-state or satisfies \(\neg p \), for every \((p, q) \in C \).

Assume that \(s \in \|\text{SET-FEASIBLE}(D)\| \). Line 10 implies that \(s \) is connected by a path \(\pi \) to a \(\|new_{10}\| \)-state. Repeat the following successive extensions of \(\pi \) ad-infinitum, denoting the last state of \(\pi \) by \(s_{\ell} \):

1. Extend \(\pi \) by a \(\|new_{10}\| \)-successor of \(s_{\ell} \), guaranteed by P1.
2. For every \(J \in J \), extend \(\pi \) by a \(\|new_{10}\| \)-path leading to a \(J \)-state, guaranteed by P2.
3. For every \((p, q) \in C \), if there exists a \(\|new_{10}\| \)-path \(\pi' \) connecting \(s_{\ell} \) to a \(q \)-state, then extend \(\pi \) by \(\pi' \). Otherwise, do not extend \(\pi \). When done, go back to 1..

Can show that \(S = \text{Inf}(\pi) \) is an \(s \)-reachable fair subgraph.
Relation to Previous Work

- Model checking of LTL with full fairness was proposed first in [LP85] and independently in [EL85]. The algorithms were applied to explicit state elaboration of the state-space, and relied on the construction of an LTL tableau and its composition with the system. Can be interpreted also as algorithms for checking the emptiness of a Street Automaton [LP85], [VW86].
- [LP85] also contained fix-point expressions for the calculation of $E_f G r$ under weak fairness. These were later implemented in most symbolic model checkers, e.g., [BCMDH92].
- Efficient symbolic model checking of LTL has been proposed in [CGH94], based on the construction of additional modules, serving as LTL testers. Only weak fairness was considered. Our approach improves on [CGH94] in the direct treatment of compassion and not relying on a reduction into CTL.
- All previous treatments of compassion suggested adding it as an antecedent to the LTL property we wish to verify.
Model Checking Response Properties

We denote by $\mathcal{D}_{\neg q}$ the FDS obtained from FDS \mathcal{D} by replacing the transition relation $\rho_{\mathcal{D}}$ by the transition relation

$$\rho_{\neg q} : \quad \neg q \land \rho_{\mathcal{D}} \land \neg q'$$

this transition relation connects state s with state \tilde{s} iff \tilde{s} is a \mathcal{D}-successor of s, and neither state satisfies q.

Algorithm SMC-RESP (\mathcal{D}, p, q) : assertion — Check that FDS \mathcal{D} satisfies $p \rightsquigarrow q$, using symbolic operations

$\text{cycles, pending : assertion}$

1. $\text{cycles} := \text{SET-FEASIBLE}(\mathcal{D}_{\neg q})$
 — — Compute all states initiating a fair $\neg q$-run.

2. $\text{pending} := p \land \text{cycles}$
 — — All p-states initiating a fair $\neg q$-run.

3. $\text{return } \Theta_{\mathcal{D}} \land (\rho^*_{\mathcal{D}} \Diamond \text{pending})$
 — — All initial states leading to p-states initiating a fair $\neg q$-run.

Claim 6. Algorithm SMC-RESP returns a vacuous (unsatisfiable, $= 0$) assertion iff \mathcal{D} satisfies $p \rightsquigarrow q$.
Model Checking Accessibility

Accessibility for process P_1 of MUX-SEM can be specified by the response property

$$T_1 \leadsto C_1$$

Invoking $\text{SET-FEASIBLE}(\text{MUX-SEM}_{\neg C_1})$, we get:

\[
\begin{align*}
\text{next}^1_3 & : 1 \\
\text{next}^2_3 & : \neg C_1 = N_1 \lor T_1 \\
\text{next}^3_3 & : N_1 \lor (T_1 \land y = 0) \\
\text{next}^4_3 = \text{next}^1_{10} & : N_1 \lor (T_1 \land y = 0 \land \neg C_2)
\end{align*}
\]

Computing pending, we get $\text{pending} = T_1 \land y = 0 \land \neg C_2$.

Intersecting with the reachable states, we get 0 (false).

We conclude that MUX-SEM has the property of accessibility.
The TLV System

Recall the schematic presentation of the SMC-INV algorithm:

Algorithm $\text{SMC-INV} (\mathcal{D}, p) : \text{assertion} —$ Check that FDS \mathcal{D} satisfies $\text{Inv}(p)$, using symbolic operations

1. $old := 0$
2. $new := \neg p$
3. while ($new \neq old$) do
 begin
 4. $old := new$
 5. $new := new \lor (\rho_D \lozenge new)$
 end
4. return $\Theta_D \land new$

Programming it in TLV-BASIC

Func smc-inv(p);
 Local old := 1;
 Local new := 0;
 While (! (old = new))
 Let old := new;
 Let new := old | pred(total, old);
 If (new & _i)
 Let old := new;
 End -- If
 End -- end while
 Return new & _i;
End -- Func smc-inv(p);
A Response MC Algorithm which Provides Counter-Examples

Algorithm SMC-RESP \((D, p, q)\) — Model Check \(p \rightsquigarrow q\) providing counter-examples

\[
\text{cycles, rpend} : \text{assertion}
\]

\[
cycles := \text{SET-FEASIBLE}(D_q) \quad \text{— — All states initiating a fair } \neg q-\text{run}
\]

\[
rpend := p \land cycles \land (\Theta_D \diamond \rho_D^*) \quad \text{— — All reachable pending states}
\]

\[
\text{if } rpend = 0 \text{ then [print "Property is Valid"; return]}
\]

print "Property is Invalid. Counter-Example Follows"

\[
R := cycles \land \rho_D \land cycles' \quad \text{— — Restrict to transitions within } cycles
\]

\[
(position, psize) := (1, 0)
\]

\[
gpath(\Theta_D, rpend, \rho_D, \text{prefix, psize}) \quad \text{— — A path from } \Theta_D \text{ to } rpend
\]

\[
s := \text{prefix[psize]} \quad \text{— — The closest reachable pending state}
\]

\[
\text{while } (s \diamond R^*) \land \neg (R^* \diamond s) \neq 0 \text{ do}
\]

\[
s := \text{sat}((s \diamond R^*) \land \neg (R^* \diamond s)) \quad \text{— — Search for a terminal MSCS}
\]

\[
gpath(\text{prefix[psize]}, s, R, \text{prefix, psize}) \quad \text{— — Extend path to } s
\]

print "Prefix of Counter-Example:"

\[
\text{array-print(prefix, psize - 1, position)} \quad \text{— — Print ctr-example prefix}
\]

\[
(ps size, \text{period[1]}, \text{period[2]}) := (2, s, \text{sat}(s \diamond R)) \quad \text{— — Init. } period
\]

\[
\text{for each } J \in J \text{ do}
\]

\[
gpath(period[psize], J, R, \text{period, psize}) \quad \text{— — Visit next justice set}
\]

\[
\text{for each } (p, q) \in C \text{ do}
\]

\[
\text{if } (period[psize] \diamond R^*) \land q \neq 0 \text{ then}
\]

\[
gpath(period[psize], q, R, \text{period, psize}) \quad \text{— — Visit next compassion}
\]

\[
gpath(period[psize], s, R, \text{period, psize}) \quad \text{— — Close cycle}
\]

print "Repeating Period"

\[
\text{array-print(period, psize - 1, position)} \quad \text{— — Print ctr-example period}
\]
Tlv-Basic Implementation of gpath

Proc ngpath(source, destination, R, &arr, &asize);
 Local new := destination;
 Local old := 0; Local pos := 1; Let bpath[1] := new;
 While (!(old = new))
 Let old := new;
 If (null(new & source))
 Let new := old | pred(R,old);
 If (!(old = new))
 Let pos := pos + 1;
 Let bpath[pos] := new & !old;
 End -- If (!(old = new))
 End -- If (null(new & source))
 End -- While (!(old = new))
 If (new & source)
 If (asize = 0)
 Let asize := asize + 1;
 Let arr[asize] := sat(new & source);
 End -- If (asize = 0)
 While (pos)
 Let pos := pos - 1;
 If (pos)
 Let arr[asize+1] := sat(succ(R,arr[asize]) & bpath[pos]);
 Let asize := asize + 1;
 End -- If (pos)
 End -- While (pos)
 End -- If (new & source)
End -- Proc ngpath(source, destination, R, &arr);
destination = bpath[1]

bpath[2]

bpath[3]

\ldots

bpath[asize]